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Abstract
The future of deep learning is sparse: by inducing sparsity in neural networks, we are able to
train models at scale with unprecedented efficiency, paving the way for the next-generation AI
architectures. However, recent works show that the solutions found by sparse training from scratch
(Sol-S) may face inevitable performance degradation compared to those by sparse finetuning
(Sol-F), casting a pall over the true efficiency of sparse neural networks. In this paper, we put
forward an extensive empirical study on this important and foundational issue. We first observe
that Sol-S can be categorized into two distinct regimes, which we termed as the generalization
regime and the optimization regime. With analysis on Fisher information, we provide a unified
explanation on the underlying mechanism of the two regimes: sparse neural networks trained from
scratch require more information in learning, and are weaker at memorization; this mechanism
entangles Sol-S with sharper local minima and higher sensitivity in the generalization regime and
memorization failures in the optimization regime (yet it may bring better noise robustness). Based
on our findings, we propose insights on strategies to improve the performance of sparse training
from scratch via loss regularization and data scheduling. We hope our discoveries can fuel future
work to understand and improve the trainability and generalizability of deep and sparse networks.

1. Introduction: A Tale of Two Regimes

Scaling up deep learning models has been demonstrated to be an effective and reliable way to improve
the performance across a broad range of tasks (Devlin et al., 2018; Brown et al., 2020; Chowdhery
et al., 2022). However, training such over-parameterized models is costly. For example, training a
GPT-3 model will cost twelve millions dollars and produce over five-hundred tons of CO2 equivalent
emissions (Patterson et al., 2021). Recently, training a sparse network (i.e., a network with most
parameters being zero) has emerged as a promising direction to reduce the training cost and improve
the inference efficiency (Hoefler et al., 2021).

The major ways to find a sparse solution (i.e., a converged sparse network parameter) include
sparse training by finetuning (sparse finetuning , hereafter) and sparse training from scratch (sparse
scratch, hereafter). As a classical approach, sparse finetuning works by re-using the trained parameters
of a dense network and finetuning upon them; since it requires dense training, this approach is
not genuinely efficient. In contrast, sparse scratch works by generating a sparse mask prior to
training, and initializing parameters from scratch (Lee et al., 2019; Wang et al., 2020; Tanaka et al.,
2020), enjoying superior efficiency over the former. However, the big challenge is, that there exists a
performance gap (or generalization discrepancy, which we will use interchangeably) between sparse
scratch and sparse finetuning. That is, the solution of sparse scratch (i.e., Sol-S) has significantly
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Figure 1: The generalization regime and optimization regime of sparse scratch. The
plots show the performance of the final solutions of sparse scratch (Sol-S, orange line) and sparse
finetuning (Sol-F, blue line) on CIFAR-100 with ResNet32 on varying sparsity ratios. Experimental
specifications and detailed results with standard deviations reported are in Appendix. (a) Accuracy.
In regime 1, there exist large generalization discrepancies (i.e, the pink shaded area between thick
lines) for Sol-F and Sol-S while they maintain almost the same near-optimal training accuracy. We
denote this regime as the generalization regime. In regime 2, there emerge large discrepancies on both
training and test accuracy (i.e., the green shaded area). We denote this regime as the optimization
regime. (b) Loss. Similar patterns exist in regime 1 and regime 2. (c) Training prediction
entropy. Sol-S has a higher prediction entropy and the situation is exceptionally noticeable in
regime 2, implying Sol-S is much less confident in its prediction.

worse test accuracy than that of the solution of sparse finetuning (i.e., Sol-F). Considering the
remarkable benefits of sparse scratch, we ask:

What is the root cause for this performance gap? How may we close it?

Though there are some initial attempts (Evci et al., 2019; Stosic and Stosic, 2021; Frankle et al.,
2021) to understand this performance gap, it is still unclear what the fundamental mechanism is
underlying, and how to improve sparse scratch based on the findings. To answer these questions, we
provide a more fine-grained study on the performance gap and seek to shed lights on closing the
performance gap. We find that there exist two regimes as shown in Figure 1, where sparse scratch
cannot generalize as well as sparse finetuning, under fairly different mechanisms. Specifically, in
regime 1, the training performance of Sol-S can match that of Sol-F and is near-optimal; however, as
the sparsity ratio increases,1 Sol-S suffers an optimization failure in regime 2, i.e., it has considerably
worse training accuracy compared to Sol-F. We name these two regimes as the generalization regime
and the optimization regime. Our key contributions are summarized below.

• First in literature, we identify and characterize the performance gap from sparse scratch to
sparse finetuning by two regimes: the generalization regime and the optimization regime.

• With extensive experiments, we offer a consistent explanation for the two regimes: sparse scratch
requires more information in learning, and is weaker at memorization. We identify the key
factors for the worse performance of sparse scratch in the generalization regime (e.g., sharper
local minima and higher sensitivity) and the optimization regime (e.g., weaker memorization).

• Based on our findings, we provide insights on several simple strategies to improve the perfor-
mance of sparse neural networks via loss regularization or data scheduling.

1. While the two regimes here may be naïvely separated by the sparsity ratio, there may exist more nuances (e.g.,
settings for learning rate and batch size) to be discovered by future works.
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Figure 2: Training procedures. We start with a densely connected network whose parameters
are denoted as Init-D and the trained dense solution is denoted as Sol-D. To find a sparse mask,
we prune Sol-D and the remaining parameters are denoted as Init-F. We consider two types of
sparse solutions: (1) the finetuned solution Sol-F, which is obtained by training with Init-F;
(2) the scratch solution Sol-S, which is obtained by training Init-S that comes from randomly
initializing parameters of Init-F; for simplicity, we re-use the sparse mask Init-F, as similarly done
in (Evci et al., 2019).

2. Preliminaries

Notations. Let x ∈ Rm denote an input (e.g., an image) sampled from a probability distribution
p(x) , y ∈ Y = {1, · · · , C} be the class label sampled from p(y|x) for each input x, and D =
{(xi, yi)}Ni=1 denote the training dataset of size N . A neural network f parameterized by θ ∈ Rd

encodes a conditional distribution pθ(y|x). The objective is to minimize the empirical risk L(θ) =
1
N

∑
i ℓ(xi, yi;θ), where ℓ(·, ·) denotes the cross-entropy loss in our case. Given a network f(·;θ)

with a binary mask m, we denote f(·;θ ⊙m) as the resulted sparse network.

Sparse training procedures. We consider two approaches for training sparse neural networks:
sparse training from scratch (i.e., sparse scratch), and sparse training by finetuning (i.e., sparse
finetuning). The procedures and notations are specified in Figure 2. We use one-shot magnitude
pruning on a trained dense network to find the sparsity mask (Zhu and Gupta, 2017).2 This strategy
works by removing the weights with the least ℓ1-norm or absolute value, which is equivalent to the
optimal brain damage (LeCun et al., 1989). Though being simple, this strategy has shown to be a
solid pruning strategy (Liu et al., 2018; Evci et al., 2019), and introduces minimal extra complexity
to the empirical setup.

Hessian matrix and the loss curvature. The Hessian matrix is defined as the second derivative
of the loss function L(·) with respect to the network parameter θ, we denote it as

H(θ) = ∇2
θ L(θ). (2.1)

From a loss landscape perspective, numerous works have analyzed the relationship between the loss
Hessian and the generalizability or trainability of neural networks (Dinh et al., 2017; Tsuzuku et al.,
2020; Gilmer et al., 2022). The intuition is that a more degenerate Hessian matrix entails a flatter
region for the local minima, while a flatter minima is more tolerant on the data distributional shift,
leading to better generalization (Keskar et al., 2017; Neyshabur et al., 2017).

2. Many related works also discuss the lottery setting (Frankle and Carbin, 2019; Evci et al., 2019) (different from the
sparse training from scratch, it re-uses subset of the parameters from Init-D as the initialization) and multi-shot or
dynamic sparse training strategies (Mocanu et al., 2018; Evci et al., 2020; Ma et al., 2021). We plan to incorporate
comparisons with those settings in the future revisions.
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Jacobian matrix and sensitivity. Given an input x, the Jacobian matrix on the parameter θ is:

J(x) = ∇xTf(x;θ). (2.2)

The input-output Jacobian matrix captures the local sensitivity of the network to the input. This
quantity3 is shown to be well correlated with the generalization and robustness of deep neural
networks (Novak et al., 2018).

Memorization in deep neural networks. Recent works have empirically demonstrated the
impact of label memorization on the generalizability or trainability of neural networks (Arpit
et al., 2017; Chatterjee, 2018; Zhang et al., 2020b; Stephenson et al., 2021). Specifically, the Long
Tail Hypothesis states that memorization of data labels is necessary for achieving near optimal
generalization error on a long-tailed data distribution (e.g., CIFAR-10, ImageNet, etc.) (Feldman,
2020; Feldman and Zhang, 2020; Brown et al., 2021). This phenomenon may also be referred to as
“benign overfitting” (Cao et al., 2022), and different architectures have shown to possess different
inductive bias towards memorization (Zhang et al., 2020a).

Fisher information. We use Fisher information to measure the information that the training set
carries about the network parameter θ, which is formally defined as the covariance of the gradient of
the log likelihood estimate of the training set:

F(θ) = Ex∼D,ŷ∼pθ(y|x)
[
∇θ log pθ(ŷ | x)∇θ log pθ(ŷ | x)T

]
. (2.3)

By definition, Fisher information measures the confidence of the network on its solution given the
training data. It has intrinsic connections to the loss curvature and sensitivity of the neural network.
In this paper, we also claim that it is closely related to networks’ memorization ability.4 Specifically:

• Relationship to the loss curvature: As proved in Martens (2014); Achille et al. (2019), F(θ)
can be seen as a semi-definite approximation of H(θ); for a well-trained network (i.e., almost all
training data are correctly predicted), we have H(θ) ≈ F(θ) to the first-order approximation.

• Relationship to the sensitivity: Assuming perturbing the network parameter θ by δ such
that θ′ = θ + δθ, the change in the network’s output can be represented by

Ex∼q(x)KL (pθ′(y | x)∥pθ(y | x)) = δθ⊤Fδθ + o
(
∥δθ∥22

)
. (2.4)

Thus, F(θ) can be seen as a measure for the parameter sensitivity of a neural network; this
property may also be referred to as “effective connectivity” or “synaptic strength” which impacts
generalization (Achille et al., 2018; Kirkpatrick et al., 2017; Achille et al., 2019).

• Relationship to data memorization: Some initial attempts show that Fisher information is
relevant to data memorization, which in turn impacts the networks’ generalization ability (Achille
et al., 2018, 2019; Martin and Elster, 2020; Jastrzebski et al., 2021). Here, we conjecture that a
higher Fisher information associated with some samples implies that such samples are harder
for the network to memorize, such that Fisher information can be considered as a proxy for the
oddness or difficulty of training examples.

We will use the above interpretations on Fisher information5 to analyze the trainability and general-
izability of sparse neural networks in the following sections.
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finetune (ratio = 0.75): train acc = 0.978, test acc = 0.937

Figure 3: The training dynamics of trace of Fisher information. The experiments use a
synthetic dataset for binary classification with fully connected networks.6 The plots shows (1) a clear
distinction between the generalization regime (left) and the optimization regime (right), as well as
(2) the difference between sparse finetuning (thick lines) and sparse scratch (dashed lines).

Training Error Trend of Fisher Information Reasons for the Performance Gap

Generalization Regime near optimal increases first, then decreases, yet
ending up higher than finetuning’s sharper minima, higher sensitivity

Optimization Regime suboptimal increases and hardly decreases weaker memorization on training data

Table 1: Summary of the correlation of the two regimes with the dynamics of Fisher information
during training, and the major reasons for the performance gap on sparse scratch.

3. Experimental Results

Learning to generalize is like crossing a barrier or break through a bottleneck.

By Corollary A.1, the high Fisher information implies that even a small perturbation to the parameter
can bring large discrepancy of the network prediction. Empirically, this typically happens when the
network is (1) learning new concepts (cf. Shwartz-Ziv and Tishby (2017); Achille et al. (2019)), or
(2) memorizing hard examples (cf. Martin and Elster (2020); Jastrzebski et al. (2021)).

Intuitively, for sparse scratch, those new concepts (yet which may be familiar to sparse finetuning
given the pretraining) and hard examples (which may contain both worth-learning data with subtle
features and not-worth-learning data with noisy labels) incur much higher Fisher information.

3. In this paper, we use the mean squared Frobenius norm of the Jacobian matrix evaluated on the training set (i.e.,
Ex∼D[∥J(x)∥2F ], or Jacobian norm, hereafter) as the sensitivity measure, as shown in Table 2.

4. We use Fisher trace Tr(F(θ)) = Ex∼D,ŷ∼pθ(y|x)

[
∥∇θ ℓ(xi, yi;θ)∥22

]
as a proxy to measure F(θ).

5. There are also discussions on the connections of Fisher information to the (Shannon) Information Bottleneck
Theory and the stochastic learning process (Shwartz-Ziv and Tishby, 2017; Achille and Soatto, 2018; Chaudhari
and Soatto, 2018). We provide additional experiments and analysis on this in the appendix.

6. Check Appendix B for experimental details, and see Appendix C for similar results on CIFAR100 with ResNet32.
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• In the generalization regime, while sparse scratch can manage to fit all those data, the higher
fisher information coincides with tortured loss landscapes (e.g., sharper local minima and higher
sensitivity), leading to worse performance.

• In the optimization regime, sparse scratch can not even fit some of those hard examples,
resulting in drop in both training and test errors.

TODO: add corr plots on [disagreement v.s. Fisher information] w.r.t. class to confirm the intuition.

TODO: Also point to the appendix with formal review on measurable information of neural network
(e.g., the number of bits needed to encode the weights given certain training performance, which is
closely related to fisher information).

TODO: We here present our results on understanding the two regimes of performance gap. Following
the empirical validation on the two regimes in Figure 1 and the trend of Tr(F(θ)) in Figure 3, we
provide a high-level summary on the underlying mechanism in Table 1, which will be elaborated next.

3.1 The Generalization Regime: The Curse of Information

Here, we presented evidence on the underlying mechanism for the generalization regime. As the
sparsity ratio increases, the network will require more information in learning, such that the trace
of Fisher information increases. As shown in Section 2, this implies that the network may fall into
sharper local minima (which may be measured by Tr(F)) with higher sensitivity (which may be
measured by Jacobian norm). Specifically, as shown in Table 2, Sol-S possesses much larger Tr(H),
Tr(F) and Jacobian norm than Sol-F. We refer this phenomenon as the curse of information.
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Figure 4: The distribution of Hessian spectrum. This plot shows the distribution of the
spectrum for the loss Hessian at the training convergence for sparse scratch (Sol-S, orange line) and
sparse finetuning (Sol-F, blue line) on CIFAR-100 with ResNet 32 at a sparsity ratio of 0.90 (i.e., at
the generalization regime) (To update the figure to match the ratio).

3.2 The Optimization Regime: Memorization as a Double Edged Sword

In the optimization regime, for a fixed sparsity ratio, Sol-S has a much worse optimization error (or
training accuracy) compared to that of Sol-F, leading to the generalization discrepancy in this regime.
While many works have attributed the optimization failure by capacity issue (Arpit et al., 2017;
Golubeva et al., 2021), it cannot explain for our case, as Sol-S and Sol-F have the same structure
capacity (i.e., the architecture are the same) and neuron capacity (i.e., the weight connectivity of
neurons are the same).

6



The Price of Sparsity

Sparsity Ratio Tr(F) Tr(H) Jacobian Norm Entropy

Sol-F Sol-S Sol-F Sol-S Sol-F Sol-S Sol-F Sol-S

0.80 218.29 682.79 ↑ 131.66 353.87 ↑ 32.38 45.20 ↑ 0.03 0.05 ↑
0.82 242.64 990.51 ↑ 124.05 452.80 ↑ 33.56 49.50 ↑ 0.03 0.05 ↑
0.84 295.69 984.73 ↑ 166.05 452.74 ↑ 34.25 48.19 ↑ 0.03 0.05 ↑
0.86 351.47 1329.26 ↑ 175.58 484.45 ↑ 36.03 53.66 ↑ 0.04 0.06 ↑
0.88 454.83 1901.46 ↑ 172.85 596.07 ↑ 37.98 47.39 ↑ 0.04 0.07 ↑
0.90 635.20 2898.05 ↑ 292.47 722.28 ↑ 41.22 57.26 ↑ 0.05 0.08 ↑

Table 2: Fisher information, loss curvature, sensitivity and entropy. The experimental setup
of this table is the same as in Figure 1 on CIFAR100 with ResNet32. The entropy refers to the
prediction entropy evaluated on the training set. Estimation methods can be found in Appendix B,
and the full table with standard deviation reported is in Appendix ??.

As discussed in Section 2, the Long Tail Hypothesis states that many real-world data distributions
contain long-tailed or less frequent data that requires memorization in order to have good performance
on the test examples from their sub-populations. Here, we propose the Memorization Hypothesis
for Sparse Training as the fundamental reason for the performance gap in the optimization regime:
sparse scratch are weaker at memorization than sparse finetuning.

To explain, since the initialization of sparse finetuning inherits weights from a well-trained densely
connected network, it may already entail some memorization on data labels (especially for those
hard examples). However, sparse scratch initializes its weights randomly, and since memorization
happens only at the late phase of training (Liu et al., 2020), it is much harder for Sol-S to achieve
the same level of memorization as that of Sol-F, causing the phenomenon of optimization failure in
this regime.

To verify our hypothesis, instead of directly training on a natural data distribution, and verify if
those examples that Sol-F and Sol-S has disagreement on are truly those long-tailed examples that
requires memorization (which is computationally expensive (Koh and Liang, 2017; Feldman and
Zhang, 2020)),7 we adopt a noisy training setting, and shows that Sol-S memorize less on those
noisy data, as demonstrated in Figure 6.

Here, memorization can be seen as a double-edged sword since in this case, Sol-S reaches better test
performance (around 12% better than that of Sol-D and 10% better than that of Sol-F). We call
this phenomenon as benign obliviscence as it endows Sol-S with better robustness.8 Our results may
also shed lights on the barrier between Sol-F and Sol-T as discussed in (Li et al., 2018; Evci et al.,
2019).

Ziyu: To calculate the fisher information of each example and sort by that, and compare with the disagreement
plot.

7. As a side note, Hooker et al. (2019) shows that the pruned network has disagreement on the dense network mostly
on those less-frequent and long-tailed classes. See appendix for our discussion for Sol-F and Sol-S.

8. Some recent work also discuss the robustness of sparsity in the adversarial setting (Chen et al., 2022; Guo et al.,
2018).
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Figure 5: Sparse scratch memorizes worse than sparse finetuning. It is currently a placeholder
illustrating what we will do here. The plots are hard to read now.

4. Insights on Potential Algorithms for Closing the Gap

4.1 The Loss Regularization Perspective

Knowing that Sol-S has worse generalization performance due to the curse of information (which
leads to sharper minima and higher sensitivity) and the weak memorization ability, a direct intuition
is to add regularization term in the loss function in order to push for a flatter-minima solution with
less sensitivity, and encourages data memorization. There is some prior work on this direction, such
as Chao et al. (2020) which directly pursues a flat minimum valley in the training loss. Given our
analysis, it might be convenient to directly control the Fisher information; the work mostly align
to this might be Jastrzebski et al. (2021) which proposes a loss regularizer with respect to Fisher
information. However, they apply the regularization on over-capacity dense networks and aim to
reduce (harmful) memorization. In our case, we would like to moderately encourage the memorization
for sparse neural networks. A potential easy fix is to adaptively apply negative Fisher regularization
at the initial epochs (in order to encourage memorization), and remove it at the later epochs to avoid
unnecessary exploitation.
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Figure 6: Sparse training from scratch is more robust to label noise. This experiment is
conducted on CIFAR-10 with ResNet32. The training set contains 30% perturbed data whose labels
are uniformly randomly shuffled as similarly conducted in (Liu et al., 2020). The sparsity ratio is
0.95 for sparse training. The learning rate is 0.02 and decay by 0.1 at the 40th and 80th epoch. The
left two columns show the performance on the training set (noisy) and test set (clean), and the right
two columns show the performance on the clean and noisy data in the training set; the notation
correct means predicted label equals to true label, while memorized means predicted label equals to
noisy label. Clearly, sparse scratch is weaker at memorizing the data since it has the lowest training
accuracy, and it starts to memorize at a much later stage in training.

Figure 7: Trend of Fisher information. The experimental setup is the same as in Figure 6. As a
supplementary figure, the results demonstrate that the Fisher information is higher for those noisy
data, and sparse scratch has a higher Fisher information which hardly decrease when the network
can not memorize all the training data.
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4.2 The Data Schedule Perspective

4.2.1 Insights from the Linear Interpolation Path

In Evci et al. (2019), the authors show that their exists a linear path between Init-S and Sol-F,
where the loss on the training data is monotonically decreasing. We compute the training loss by
interpolating between Init-S and Sol-F, i.e., L((1− α)θInit-S + αθSol-F), and present the results
in figure 8a. The monotonicity implies that Sol-F might be attainable from Init-S by gradient-based
optimization methods, e.g., SGD, if we are allowed to schedule the training batch in a smart way
to recover this linear path. To shed some light on this direction, we visualize the cosine similarity
between the negative gradient direction of each example with the direction from Init-S to Sol-F,
i.e., θSol-F − θInit-S, in figure 8b and figure 8c. We can observe that at the beginning, the cosine
similarities are mostly concentrated around 0, which means if we randomly sample a batch of data,
the update direction is more likely to be orthogonal to the θSol-F − θInit-S. This implies the data
scheduling will play a more crucial role at the initial phase, i.e., when α is small, to recover the linear
path. As α increases, we find that the mean of the cosine similarity is positive, which indicates the
optimization enters a contractive region, where the scheduling of data may not be that important.

However, finding the data scheduling may rely on the information of θSol-F − θInit-S, which is not
available for sparse scratch. Therefore, we plan to further analyze the patterns, e.g., the trace of
FIM, of the data scheduling that can recover the linear path so as to offer insights on designing
criteria for scheduling data without knowing θSol-F − θInit-S.

(a) (b) (c)

Figure 8: Linear interpolation results on ResNet32 trained on CIFAR100. (a) The linear interpolation
path. The red curve shows the test loss for the interpolated network f((1 − α)θInit-S + αθSol-F)
with different interpolation coefficients α. While we observe in Figure 2 that Sol-S and Sol-F has a
performance gap, this path shows that we may close the gap by following the linear interpolation
path which is monotonically decreasing. (b) & (c) Distribution of the cosine similarity of per sample
gradient to the linear interpolation direction from the weights of Init-S to Sol-F.

Additionally, the work which is mostly aligned with our idea in data schedule might be Zhang et al.
(2021), which shows that it is possible to construct a subset of training dataset in each iteration
that consists of two types of data: (1) the data points which are hard to memorize, and (2) the data
points where the sparse neural networks has high disagreement with the prediction of the dense neural
networks. However, there is an unavoidable blemish of this approach: the hardest examples inevitably
contains some noisy or corrupted samples, such that repetitively reinforcing the memorization on
them is harmful. We here propose a simple heuristics based on the critical learning period to fix
the issue: we should sample a subset of hardest-to-memorize examples at the beginning to train the
sparse neural network (the memorization phase), then gradually decrease the average difficulty of
the training samples to some certain level (the consolidating phase). A promising proxy for the
hardness of memorization would be Fisher information.
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Figure 9: This figure shows the class distribution for the data whose cosine values are of the upper
95% quantile. Clearly, the close-to-init one (α = 0.3) and the close-to-solution (α = 0.9) one has
different class distributions.

Figure 10: This figure shows a more fine-grained results of the class distribution for the data whose
cosine values are of the upper 95% quantile when α = 0.3. Some classes disproportionally have higher
cosine values, implying that there may exist pattern to schedule data for improving the network
performance.

4.2.2 Data Scheduling by Fisher Information

Note: to add the bi-level algorithm, that is to first to select by loss (meaning using label information),
then select from that subset by fisher information (no label information, meaning that select the
points which change the distribution most).

5. Conclusions and Future Work

In conclusion, we identify and characterize the performance gap between sparse scratch and sparse
finetuning by two regimes: the generalization regime and the optimization regime. We provide a
unified understanding by analysis in Fisher information and data memorization. For next steps, we
consider to propose practical and efficient training schedules to improve the performance of sparse
training from scratch, paving the way for truly efficient deep network training.
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Algorithm 1 A Toy Data Curriculum by Fisher Information
Input: train set D = {(xi, yi)}Ni=1, batch size nB, pool size nP > nB, step size η, phase time t⋆

1: Initialize weight parameter θt where the time step t = 0
▽ /⋆ Fisher information guided SGD phase⋆/

2: for t = 1, . . . , t⋆ do
3: Uniformly randomly select a large input data pool Pt of size nP from D
4: ∀ xi ∈ Pt, compute Fisher[θt | xi], the (trace of) Fisher information of θt given xi

5: Bt ← {(xi, yi)}nB
i=1, the bottom-nB samples in Pt in terms of the criteria Fisher

6: θt+1 ← θt − η∇θLB(θ)
7: end for

▽ /⋆ Regular SGD phase ⋆/
8: for t = t⋆ + 1, . . . , T do
9: Uniformly randomly select a data batch Bt of size nB from D

10: θt+1 ← θt − η∇θLB(θ)
11: end for

Algorithm 2 (Baseline) Fisher Information Selection
Input: Training dataset D = {(xi, yi)}Ni=1, batch size nB, pool size nP > nB, learning rate η

1: Initialize weight parameter θt where the time step t = 0
2: for t = 1, . . . , T do

▽ /⋆ initialize a pool and compute the criteria ⋆/
3: Uniformly randomly select a large input data pool Pt of size nP from D
4: ∀ xi ∈ Pt, compute Fisher[θt | xi], the (trace of) Fisher information of θt given xi

▽ /⋆ create the subset by sorting and selection ⋆/
5: Bt ← {(xi, yi)}nB

i=1, the top-nB samples in Pt in terms of the criteria Fisher
▽ /⋆ update parameter ⋆/

6: θt+1 ← θt − η∇θLB(θ) where the mini-batch gradient is ∇θLB(θ)
7: end for

Algorithm 3 Reducible Fisher Information Selection
Input: Training dataset D = {(xi, yi)}Ni=1, batch size nB, pool size nP > nB, learning rate η
Input: Parameter θho from a small model trained on a small holdout set Dho

1: ∀ xi ∈ D, compute Fisher[θho | xi] ▷ /⋆ compute the holdout Fisher information ⋆/
2: Initialize weight parameter θt where the time step t = 0
3: for t = 1, . . . do

▽ /⋆ initialize a pool and compute the criteria ⋆/
4: Uniformly randomly select a large input data pool Pt of size nP from D \ Dho

5: ∀ xi ∈ Pt, ReduceFisher[xi]← Fisher[θt | xi]− Fisher[θho | xi]
▽ /⋆ create the subset by sorting and selection ⋆/

6: Bt ← {(xi, yi)}nB
i=1, the top-nB samples in Pt in terms of the criteria ReducibleFisher

▽ /⋆ update parameter ⋆/
7: θt+1 ← θt − η∇θLB(θ) where the mini-batch gradient is ∇θLB(θ)
8: end for

12



The Price of Sparsity

Acknowledgments and Disclosure of Funding

Acknowledgements. We would like to thank Yi Sun for the detailed discussions and helpful
feedback on the experimental design for verifying the memorization effect in sparse training. We
thank Aoming Liu, Huan Wang, Yue Bai and Zixin Ding for their constructive discussions. The
project was supported in part by DOE grant DE-EE0009505. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of any funding agencies.

References
Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep representations.

The Journal of Machine Learning Research, 19(1):1947–1980, 2018.

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep networks. In
International Conference on Learning Representations, 2018.

Alessandro Achille, Giovanni Paolini, and Stefano Soatto. Where is the information in a deep neural network?
arXiv preprint arXiv:1905.12213, 2019.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kanwal,
Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization in
deep networks. In International conference on machine learning, pages 233–242. PMLR, 2017.

Gavin Brown, Mark Bun, Vitaly Feldman, Adam Smith, and Kunal Talwar. When is memorization of
irrelevant training data necessary for high-accuracy learning? In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 123–132, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Yuan Cao, Zixiang Chen, Mikhail Belkin, and Quanquan Gu. Benign overfitting in two-layer convolutional
neural networks. arXiv preprint arXiv:2202.06526, 2022.

Shih-Kang Chao, Zhanyu Wang, Yue Xing, and Guang Cheng. Directional pruning of deep neural networks.
Advances in Neural Information Processing Systems, 33:13986–13998, 2020.

Satrajit Chatterjee. Learning and memorization. In International Conference on Machine Learning, pages
755–763. PMLR, 2018.

Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference, converges
to limit cycles for deep networks. In 2018 Information Theory and Applications Workshop (ITA), pages
1–10. IEEE, 2018.

Tianlong Chen, Zhenyu Zhang, pengjun wang, Santosh Balachandra, Haoyu Ma, Zehao Wang, and Zhangyang
Wang. Sparsity winning twice: Better robust generalization from more efficient training. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=SYuJXrXq8tw.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Harald Cramér. Mathematical Methods of Statistics, volume 43. Princeton University Press, 1946.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

13

https://openreview.net/forum?id=SYuJXrXq8tw


Generalization and Memorization in Sparse Neural Networks

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep
nets. In International Conference on Machine Learning, pages 1019–1028. PMLR, 2017.

Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. The difficulty of training sparse neural networks.
In Identifying and Understanding Deep Learning Phenomena Workshop, International Conference on
Machine Learning, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In International Conference on Machine Learning, pages 2943–2952. PMLR, 2020.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 954–959, 2020.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long tail via
influence estimation. Advances in Neural Information Processing Systems, 33:2881–2891, 2020.

Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philosophical transactions of
the Royal Society of London. Series A, containing papers of a mathematical or physical character, 222
(594-604):309–368, 1922.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural networks at
initialization: Why are we missing the mark? In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=Ig-VyQc-MLK.

Justin Gilmer, Behrooz Ghorbani, Ankush Garg, Sneha Kudugunta, Behnam Neyshabur, David Cardoze,
George Edward Dahl, Zachary Nado, and Orhan Firat. A loss curvature perspective on training instabilities
of deep learning models. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=OcKMT-36vUs.

Anna Golubeva, Guy Gur-Ari, and Behnam Neyshabur. Are wider nets better given the same number of
parameters? In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=_zx8Oka09eF.

Yiwen Guo, Chao Zhang, Changshui Zhang, and Yurong Chen. Sparse dnns with improved adversarial
robustness. Advances in neural information processing systems, 31, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training in neural networks. Journal of Machine Learning
Research, 22(241):1–124, 2021.

Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. What do compressed deep
neural networks forget? arXiv preprint arXiv:1911.05248, 2019.

Stanislaw Jastrzebski, Devansh Arpit, Oliver Astrand, Giancarlo B Kerg, Huan Wang, Caiming Xiong,
Richard Socher, Kyunghyun Cho, and Krzysztof J Geras. Catastrophic fisher explosion: Early phase fisher
matrix impacts generalization. In International Conference on Machine Learning, pages 4772–4784. PMLR,
2021.

14

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=Ig-VyQc-MLK
https://openreview.net/forum?id=OcKMT-36vUs
https://openreview.net/forum?id=OcKMT-36vUs
https://openreview.net/forum?id=_zx8Oka09eF
https://openreview.net/forum?id=_zx8Oka09eF


The Price of Sparsity

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In International
Conference on Learning Representations, 2017.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In International
conference on machine learning, pages 1885–1894. PMLR, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86, 1951.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approximation for
natural gradient descent. Advances in neural information processing systems, 32, 2019.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information processing
systems, 2, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based on
connection sensitivity. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=B1VZqjAcYX.

Dawei Li, Tian Ding, and Ruoyu Sun. On the benefit of width for neural networks: Disappearance of bad
basins. arXiv preprint arXiv:1812.11039, 2018.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning regular-
ization prevents memorization of noisy labels. Advances in neural information processing systems, 33:
20331–20342, 2020.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270, 2018.

Xiaolong Ma, Geng Yuan, Xuan Shen, Tianlong Chen, Xuxi Chen, Xiaohan Chen, Ning Liu, Minghai Qin,
Sijia Liu, Zhangyang Wang, et al. Sanity checks for lottery tickets: Does your winning ticket really win
the jackpot? Advances in Neural Information Processing Systems, 34, 2021.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193,
2014.

Jörg Martin and Clemens Elster. Inspecting adversarial examples using the fisher information. Neurocomputing,
382:80–86, 2020.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu, and Antonio
Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network
science. Nature communications, 9(1):1–12, 2018.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generalization in
deep learning. Advances in neural information processing systems, 30, 2017.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Sensitivity
and generalization in neural networks: an empirical study. arXiv preprint arXiv:1802.08760, 2018.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David
So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv preprint
arXiv:2104.10350, 2021.

15

https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX


Generalization and Memorization in Sparse Neural Networks

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information. arXiv
preprint arXiv:1703.00810, 2017.

Cory Stephenson, Suchismita Padhy, Abhinav Ganesh, Yue Hui, Hanlin Tang, and SueYeon Chung. On the
geometry of generalization and memorization in deep neural networks. arXiv preprint arXiv:2105.14602,
2021.

Darko Stosic and Dusan Stosic. Search spaces for neural model training. arXiv preprint arXiv:2105.12920,
2021.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks without
any data by iteratively conserving synaptic flow. Advances in Neural Information Processing Systems, 33:
6377–6389, 2020.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring scale invariant
definition of flat minima for neural networks using pac-bayesian analysis. In International Conference on
Machine Learning, pages 9636–9647. PMLR, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by preserving
gradient flow. In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=SkgsACVKPH.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Michael C. Mozer, and Yoram Singer. Identity crisis: Memo-
rization and generalization under extreme overparameterization. In International Conference on Learning
Representations, 2020a. URL https://openreview.net/forum?id=B1l6y0VFPr.

Xiao Zhang, Haoyi Xiong, and Dongrui Wu. Rethink the connections among generalization, memorization
and the spectral bias of dnns. arXiv preprint arXiv:2004.13954, 2020b.

Zhenyu Zhang, Xuxi Chen, Tianlong Chen, and Zhangyang Wang. Efficient lottery ticket finding: Less data
is more. In International Conference on Machine Learning, pages 12380–12390. PMLR, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

16

https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=B1l6y0VFPr


The Price of Sparsity

A. Notes on Information in Deep Neural Networks

As a supplement to Section 3, we here provide a detailed discussion on information in deep neural
networks. Consider a classification task with a conditional distribution p(y|x), where the random
variable x ∼ p(x) denotes an input (e.g., an image) and the random variable y ∈ Y = {1, · · · , C}
denotes the target. Let D = {(xi, yi)}Ni=1 be a training dataset i.i.d. sampled from p(x, y) =
p(x)p(y|x). A neural network f(·;θ) with the weight parameter θ ∈ Rd encodes a conditional
distribution qθ(y|x) by fitting the dataset. We denote the network prediction for xi as ŷi.

The objective is to minimize the negative log likelihood loss (i.e., the cross-entropy loss) on D:

min
θ
LD(θ) =

1

N

N∑
i=1

ℓ(xi, yi;θ) (A.1)

=
1

N

N∑
i=1

− log qθ(yi|xi). (A.2)

We take the mini-batch stochastic gradient descent (SGD) for the minimization. Let B = {(xi, yi)}NB
i=1

denotes a random mini batch i.i.d. sampled from D. The average loss gradient of the random mini-
batch is defined as ∇θLB(θ) =

1
nB

∑
xi∈B∇θℓ(xi, yi;θ). Given a learning rate η and time step t, we

update the weight parameter by:

θt+1 ← θt − η∇θLB(θ). (A.3)

We introduce KL divergence (also termed as relative entropy) as a useful notion for the following
discussion; it can be seen as an intrinsic dissimilarity metric for distributions (Kullback and Leibler,
1951). For any two distributions qθ(·) and qθ′(·), the KL divergence between them is:

DKL(qθ(·)∥qθ′(·)) ∆
= Eqθ(·)

[
log

qθ(·)
qθ′(·)

]
. (A.4)

A.1 Fisher Information

In this sub-section, we first introduce Fisher information from its original parameter estimation
view (Fisher, 1922). However, we note that this view is unsuitable in the context of deep learning,
thus we discuss an alternative view by taking Fisher information as a local distance metric
for distributions. This will foster the interpretation of Fisher information as a measure for
information retained by the neural network, and lay a good foundation for understanding the
role of Fisher information in the optimization dynamics and generalization.
Definition A.1. (Fisher information — an estimation view). Imagine θ as an unknown
parameter modeling a distribution qθ(·). Assuming the log likelihood function log qθ(·) is differentiable,
we define the score function of qθ(·) as the gradient of the log likelihood function log qθ(·):

s(θ)
∆
= ∇θ log qθ(·). (A.5)

The Fisher information of qθ(·) is defined as the covariance of the score function:

F(θ)
∆
= Covqθ(·) [s(θ)] (A.6)
(a)
= Eqθ(·)

[
(∇θ log qθ(·))(∇θ log qθ(·))⊤

]
, (A.7)

where (a) follows from the fact that Eqθ(·) [s(θ)] = 0.
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Remark A.1. For neural network parameterized by θ, F(θ) is the fitted gradient covariance of the
negative log likelihood loss ℓ(xi, ŷi;θ), that is F(θ) = Covxi∼D,ŷi∼qθ(y|x) [∇θ log qθ(ŷi|xi)].

As a side note, it is important not to confuse this with the training gradient covariance, i.e., the
empirical Fisher information, in which ŷi above is replaced with the true target yi ∼ p(y|x). The
emprical Fisher information may be used to approximate the Fisher information yet it has some
limitations (Kunstner et al., 2019), which are not of interests of discussions here.

This classical view is concerned with the parameter estimation problem, and θ is treated as an
unknown parameter characterizing a distribution qθ(·). A high F(θ) implies that the likelihood
function qθ(·) is rapidly varying,1 i.e., the likelihood is easily affected by the choice (or value) of θ;
thus it is easy to infer the true value of θ by sampling data from qθ(·); in other words, the samples
can can provide high amount of information to estimate the unknown parameter θ.2

However, the estimation view is fundamentally improper to analyze neural networks. In the context
of deep learning, θ is rather a known parameter (i.e., network weights) controling the prediction
distribution. It is meaningless to estimate θ through sampling from predictions. The point of focus
is not the information that samples from predictions can provide about θ, but rather the information
that θ can provide about the neural network learning process (little literature has explicitly noted
this slight distinction, but it can bring potential confusions).

Learning is a dynamic process. The weight parameter θ is ever changing (updating) with SGD; it is
natural to think of the information of θ from a variation perspective.3 Intuitively:

If small variation in θ results in large discrepancy to the network prediction distribution qθ(·),
this θ can be seen as to withhold high amount of information about the learning process.

We hereby introduce Fisher information as a local metric for such distribution discrepancy.

Lemma A.1. Assume that the log likelihood function log qθ(·) is twice differentiable, and denote its
Hessian with respect to θ as Hlog qθ(·). The Fisher information of qθ(·) equals the negative of the
expected Hessian (i.e., second derivative) of the log likelihood function, that is:

F(θ) = −Eqθ(·)
[
Hlog qθ(·)

]
. (A.8)

Proof. Let’s instantiate the likelihood function by qθ(z), where z ∼ qθ(z).4 Then,

Hlog qθ(z)
∆
= ∇2

θ log qθ(z)

= ∇θ
∇θqθ(z)

qθ(z)

(a)
=

qθ(z)Hqθ(z) −∇θqθ(z)∇θqθ(z)
⊤

qθ(z)qθ(z)

=
Hqθ(z)

qθ(z)
−
(
∇θqθ(z)

qθ(z)

)(
∇θqθ(z)

qθ(z)

)⊤

, (A.9)

where (a) follows from the quotient rule and Hqθ(z)
∆
= ∇2

θqθ(z).

1. In this note, qθ(·) may denote a distribution or a likelihood function. We will add clarifications when necessary.
2. Plus, Cramér–Rao Bound (Cramér, 1946) shows the precision of any unbiased estimator for θ is at most F(θ).
3. Notice how this differs from the common definition of information by Shannon entropy, which considers information

about the static distribution per se, instead of the change of the distribution by the local parameter variation
which we are discussing. An important prior work of this is Achille et al. (2019).

4. The random variable z can be viewed as a imprecise shorthand notation for y|x in our context.
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Taking expectation on Eq. A.9:

Ez∼qθ(z)

[
Hlog qθ(z)

]
= Ez∼qθ(z)

[
Hqθ(z)

qθ(z)
−

(
∇θqθ(z)

qθ(z)

)(
∇θqθ(z)

qθ(z)

)⊤
]

=

∫
Hqθ(z)

qθ(z)
qθ(z)dz− Ez∼qθ(z)

[(
∇θqθ(z)

qθ(z)

)(
∇θqθ(z)

qθ(z)

)⊤
]

=

∫
∇2

θqθ(z)dz− Ez∼qθ(z)

[
∇θ log qθ(z)∇θ log qθ(z)

⊤]
(b)
= ∇2

θ

∫
qθ(z)dz− F(θ)

= −F(θ), (A.10)

where (b) follows from Definition A.1. Thus F(θ) = −Eqθ(·)
[
Hlog qθ(·)

]
.

Corollary A.1. (Fisher information — a metric view). Given two distributions qθ(·) and qθ′(·)
parameterized by θ and θ′ respectively and assuming their likelihood functions are twice differentiable,
we have the Fisher information of θ as the following:

F(θ) = ∇2
θ′DKL (qθ(·)∥qθ′(·))

∣∣
θ′=θ

. (A.11)

Proof. By definition in Eq. A.4 and instantiating the likelihood function with the random variable z,
the gradient of the KL divergence can be decomposed as:

∇θ′DKL (qθ(z)∥qθ′(z)) = ∇θ′Ez∼qθ(z) [log qθ(z)]−∇θ′Ez∼qθ(z) [log qθ′(z)]

= −∇θ′Ez∼qθ(z) [log qθ′(z)]

= −
∫

qθ(z)∇θ′ log qθ′(z)dz.

Thus, the second derivative of the KL divergence with regard to θ′ evaluated at θ′ = θ is:

∇2
θ′DKL (qθ(z)∥qθ′(z))

∣∣
θ′=θ

= −
∫

qθ(z)∇2
θ′ log qθ′(z)

∣∣∣∣
θ′=θ

dz

= −
∫

qθ(z)Hlog qθ(z)dz

= −Ez∼qθ(z)

[
Hlog qθ(z)

]
(a)
= F(θ), (A.12)

where (a) follows from Lemma A.1. Thus F(θ) = ∇2
θ′DKL (qθ(·)∥qθ′(·))

∣∣
θ′=θ

.

Corollary A.2.. [Fisher information and the 2nd order approximation of KL divergence]
Given a distribution qθ(·) paramertized by θ, consider perturbing the parameter by ϵ such that
θ′ = θ + ϵ, the KL divergence5 of the two distributions is:

DKL (qθ(·)∥qθ′(·)) = 1

2
ϵ⊤F(θ)ϵ+ o(∥ϵ∥22) . (A.13)

5. It is easy to verify that the sign of ϵ does not affect the result in Eq. A.13; in this regard, Fisher information may
be considered as a symmetric metric in the distribution space.
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Proof. Instantiate the likelihood function with the random variable z. The second order Taylor
expansion of log qθ′(z) with regard to θ is given as:

log qθ′(z) = log qθ(z) +∇θ log qθ(z)
⊤ϵ+

1

2
ϵ⊤∇2

θ log qθ(z)ϵ+ o(∥ϵ∥22). (A.14)

We then expand the KL divergence between the two distributions by:

DKL (qθ(z)∥qθ′(z)) = Ez∼qθ(z) [log qθ(z)− log qθ′(z)]

(a)
= Ez∼qθ(z)[log qθ(z)− log qθ(z)−∇θ log qθ(z)

⊤ϵ− 1

2
ϵ⊤∇2

θ log qθ(z)ϵ+ o(∥ϵ∥22)]

= −Ez∼qθ(z)

[
∇θ log qθ(z)

⊤ϵ

]
− Ez∼qθ(z)

[
1

2
ϵ⊤∇2

θ log qθ(z)ϵ

]
+ o(∥ϵ∥22)

= −
∫
∇θqθ(z)

⊤

qθ(z)
qθ(z)ϵdz−

1

2
ϵ⊤Ez∼qθ(z)

[
∇2

θ log qθ(z)
]
ϵ+ o(∥ϵ∥22)

(b)
= −ϵ⊤∇θ

∫
qθ(z)dz+

1

2
ϵ⊤F(θ)ϵ+ o(∥ϵ∥22)

= −ϵ⊤∇θ1+
1

2
ϵ⊤F(θ)ϵ+ o(∥ϵ∥22)

=
1

2
ϵ⊤F(θ)ϵ+ o(∥ϵ∥22), (A.15)

where (a) follows from Eq. A.14, and (b) follows from Lemma A.1 that F(θ) = −Ez∼qθ(z)

[
Hlog qθ(z)

]
.

Thus DKL (qθ(·)∥qθ′(z)) = 1
2ϵ

⊤F(θ)ϵ+ o(∥ϵ∥22).

This metric view offers a sensible interpretation on common trends of the Fisher information of
qθ(y|x) during network training. Relatively speaking:

• Low F(θ): This implies that the gradient update will not change the prediction distribution
much. It usually happens at (1) the early phases of training, where the prediction distribution is
close to random, and a small variation to the parameter of the random will have little influence
on the distribution; or (2) the ending phases (or converging phases), where the training is
rather stabilized and the prediction distribution are close to true distribution, thus the gradients
are close to zero, leading to a low Fisher information (also see Remark A.1).

• High F(θ): This implies that even a small perturbation to the parameter can bring large
discrepancy of the network prediction. Empirically, this typically happens when the network
is (1) learning new concepts (cf. Achille et al. (2019)), or in other words at the fitting phase
(in contrast to the generalization phase, cf. Shwartz-Ziv and Tishby (2017), especially on the
relation to the gradient signal-to-noise ratio), or (2) memorizing many hard or noisy examples
(cf. Jastrzebski et al. (2021)).

Often, F(θ) will first increase, then drop, leading to a (skewed) bell-shaped trend during training.
Thus the learning process appears to be crossing a barrier or a bottleneck.

The advantage of F(θ) as a metric for the information content of neural networks is that it provides a
dynamic (or variation) perspective compatible with the dynamic learning process, and it is relatively
easy to compute. However, the limitation is also obvious — it can only serve as a local metric.

As we observe that the Fisher information of sparse scratch is much higher than sparse finetuning, a
direct solution is to propose a data curriculum for sparse scratch, to ensure a more stable training
near the initialization.
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B. Experimental Details

B.1 Network Architectures and Training Specifications

Our code and re-implementation instructions is publicly available at this GitHub repository:
https://github.com/ziyu-deep/Generalization-and-Memorization-in-Sparse-Training.

For Figure 1, 4, 5 and Table 2, the dataset used is CIFAR100 (Krizhevsky et al., 2009). The
architecture used is ResNet (He et al., 2016) with depth of 32 and widen factor of 4. We initialize the
network by Kaiming initialization (He et al., 2015). In network training, we use stochastic gradient
descent (SGD) as the optimizer with a batch size of 128 with momentum of 0.9. The initial learning
rate is set to be 0.1 and decays by 0.1 at the 100th, 150th and 200th epochs. The number of training
epochs for the dense network is 200, and for sparse finetune and sparse scratch is 250. The weight
decay is set to be 0.0002. We use five different random seeds to do the training.

C. Supplement to Figure 3: Trends of Fisher Information
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Figure 11: Dynamics of Fisher Information (Generalization Regime). The experiments are
conducted on CIFAR100 with ResNet32 for sparse scratch and sparse finetuning with sparsity ratio
varying from 0.80 to 0.90, corresponding the generalization regime in Figure 1.
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Figure 12: Dynamics of Fisher Information (Optimization Regime). The experiments are
conducted on CIFAR100 with ResNet32 for sparse scratch and sparse finetuning with sparsity ratio
varying from 0.92 to 0.96, corresponding the optimization regime in Figure 1.
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