Follow-ups Also Matter: Improving Contextual Bandits via Post-serving Contexts

Chaoqi Wang¹, Ziyu Ye¹, Zhe Feng², Ashwinkumar Badanidiyuru³, Haifeng Xu¹

> The University of Chicago¹ Google Research² Google³

> > NeurIPS 2023

Introduction ●O	Preliminaries OO	Method OO	Results 00000
Background			
Dackground			

Figure 1: Illustration of learning with post-serving contexts.

- **Motivation**: Post-serving contexts are prevalent in recommendation systems.
- Challenges: Classical bandit algorithms often fall short in such scenarios.
- Research question: How to effectively utilize post-serving information in linear contextual bandits?

Method

Problem Setup and Notations

- **Problem Setup**: Each time $t = 1, 2, \cdots, T$:
 - The learner observes the context x_t .
 - The learner selects an arm $a_t \in [K]$.
 - The learner observes the reward r_{t,a_t} .
 - The learner observes the post-serving context z_t .
- ► Key Assumptions:
 - Reward function:

▶ Pre-serving context: $x \in \mathbb{R}^{d_{x}}$; post-serving context: $z \in \mathbb{R}^{d_{z}}$.

•
$$\boldsymbol{z} = \phi^{\star}\left(\boldsymbol{x}_{t}\right) + \boldsymbol{\epsilon}_{t}, \text{and } \phi^{\star}(\boldsymbol{x}) = \mathbb{E}[\boldsymbol{z} \mid \boldsymbol{x}]$$

Assumption: Generalized Learnability of $\phi^*(\cdot)$

Learnability Assumption

There exists an algorithm that, given t pairs of examples $\{(x_s, z_s)\}_{s=1}^t$ with arbitrarily chosen x_s 's, outputs an estimated function of $\phi^\star : \mathbb{R}^{d_x} \to \mathbb{R}^{d_z}$ such that for any $x \in \mathbb{R}^{d_x}$, the following holds with probability at least $1 - \delta$,

$$e_t^{\delta} := \left\| \widehat{\phi}_t(\boldsymbol{x}) - \phi^{\star}(\boldsymbol{x}) \right\|_2 \le C_0 \cdot \left(\|\boldsymbol{x}\|_{\boldsymbol{X}_t^{-1}}^2 \right)^{\boldsymbol{\alpha}} \cdot \log(t/\delta),$$

where $\alpha \in (0, 1/2]$ and C_0 is some universal constant.

- The larger the value of α , the faster the learning rate for $\phi^*(\cdot)$.
- For linear functions, $\alpha = 1/2$.

Preliminaries O●	

Why Natural Attempts May be Inadequate?

Similar to [Wang et al., 2016]¹, a natural idea is to fit $\hat{\phi}(\cdot)$, and obtain the parameter estimate by solving:

$$\ell_t(\boldsymbol{\theta}_a,\boldsymbol{\beta}_a) = \sum_{s \in [t]: a_s = a} \left(r_{s,a} - \boldsymbol{x}_t^\top \boldsymbol{\theta}_a - \widehat{\boldsymbol{\phi}_s}(\boldsymbol{x}_s)^\top \boldsymbol{\beta}_a \right)^2 + \lambda \left(\|\boldsymbol{\theta}_a\|_2^2 + \|\boldsymbol{\beta}_a\|_2^2 \right).$$

▶ The regret can be $\widetilde{\mathcal{O}}(T^{3/4})$ when initialized away from the global optimum.

• We propose to get the parameter estimate by solving:

$$\ell_t(\boldsymbol{\theta}_a, \boldsymbol{\beta}_a) = \sum_{s \in [t]: a_s = a} \left(r_{s,a} - \boldsymbol{x}_s^\top \boldsymbol{\theta}_a - \boldsymbol{z}_s^\top \boldsymbol{\beta}_a \right)^2 + \lambda \left(\|\boldsymbol{\theta}_a\|_2^2 + \|\boldsymbol{\beta}_a\|_2^2 \right).$$

This requires modification over the original Elliptical Potential Lemma (EPL) to accommodate noise in contexts during learning.

¹Huazheng Wang, Qingyun Wu, and Hongning Wang. "Learning Hidden Features for Contextual Bandits". In: *CIKM*. 2016, pp. 1633–1642.

C. Wang, Z. Ye, Z. Feng, A. Badanidiyuru, H. Xu

The Proposed Lemma: Generalized EPL

Generalized Elliptical Potential Lemma²

Suppose (1) $X_0 \in \mathbb{R}^{d \times d}$ is any positive definite matrix; (2) $x_1, \ldots, x_T \in \mathbb{R}^d$ and $\max_t ||x_t|| \leq L_x$; (3) $\epsilon_1, \ldots, \epsilon_T \in \mathbb{R}^d$ are independent bounded zero-mean noises satisfying $\max_t ||\epsilon_t|| \leq L_\epsilon$ and $\mathbb{E}[\epsilon_t \epsilon_t^\top] \succcurlyeq \sigma_\epsilon^2 I$; and (4) \widetilde{X}_t is defined as:

$$\widetilde{oldsymbol{X}}_t = oldsymbol{X}_0 + \sum_{s=1}^t (oldsymbol{x}_s + oldsymbol{\epsilon}_s) (oldsymbol{x}_s + oldsymbol{\epsilon}_s)^ op \in \mathbb{R}^{d imes d}.$$

For any $p\in[0,1],$ the following inequality holds with probability at least $1-\delta,$

$$\sum_{t=1}^{T} \left(1 \wedge \|\boldsymbol{x}_t\|_{\boldsymbol{\widetilde{X}}_{t-1}}^2 \right)^p \leq 2^p T^{1-p} \log^p \left(\frac{\det \boldsymbol{X}_T}{\det \boldsymbol{X}_0} \right) \\ + \frac{8L_{\epsilon}^2 (L_{\epsilon} + L_x)^2}{\sigma_{\epsilon}^4} \log \left(\frac{32dL_{\epsilon}^2 (L_{\epsilon} + L_x)^2}{\delta \sigma_{\epsilon}^4} \right)$$

²The original EPL corresponds to the specific case of p = 1.

00	00	00	00000

The Proposed Algorithm: poLinUCB

Algorithm 1 poLinUCB (Linear UCB with post-serving contexts)

- 1: for t = 0, 1, ..., T do
- 2: Receive the pre-serving context x_t .
- 3: Compute the optimistic parameters by maximizing the UCB objective:

$$\left(a_t, \widetilde{\phi}_t(\boldsymbol{x}_t), \widetilde{\boldsymbol{w}}_t
ight) = rgmax_{(a,\phi, \boldsymbol{w}_a) \in [K] imes \mathcal{C}_{t-1}\left(\widehat{\phi}_{t-1}, \boldsymbol{x}_t
ight) imes \mathcal{C}_{t-1}\left(\widehat{\boldsymbol{w}}_{t-1,a}
ight)} \begin{bmatrix} \boldsymbol{x}_t \\ \phi(\boldsymbol{x}_t) \end{bmatrix}^{ op} \boldsymbol{w}_a.$$

- 4: Play the arm a_t and receive the post-serving context z_t and the reward r_{t,a_t} .
- 5: Compute $\widehat{\boldsymbol{w}}_{t,a}$ for each $a \in \mathcal{A}$ using:

$$\ell_t\left(\boldsymbol{\theta}_a, \beta_a\right) = \sum_{s \in [t]: a_s = a} \left(r_{s,a} - \boldsymbol{x}_s^\top \boldsymbol{\theta}_a - \boldsymbol{z}_s^\top \beta_a \right)^2 + \lambda \left(\|\boldsymbol{\theta}_a\|_2^2 + \|\beta_a\|_2^2 \right) \,.$$

- 6: Compute the estimated post-serving context generating function $\hat{\phi}_t(\cdot)$ using ERM.
- 7: Update confidence sets $\mathcal{C}_t(\widehat{\boldsymbol{w}}_{t,a})$ and $\mathcal{C}_t(\widehat{\phi}_t, \boldsymbol{x}_t)$ for each a.
- 8: end for

Introduction	Preliminaries	Method	Results
OO	OO	OO	●0000

Regret Analysis

Settings	Ours
Action-independent post-serving contexts	$\widetilde{\mathcal{O}}\left(T^{1-\alpha}d_u^{\alpha} + d_u\sqrt{TK}\right)$
Action-dependent post-serving contexts	$\widetilde{\mathcal{O}}\left(T^{1-\alpha}d_u^{\alpha}\sqrt{K} + d_u\sqrt{TK}\right)$
Same setting as in [Abbasi et al., 2011] ³	$\widetilde{\mathcal{O}}\left(T^{1-\alpha}d_u^{\alpha} + d_u\sqrt{T}\right)$

Table 1: Upper bound of regret of poLinUCB.

³Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. "Improved Algorithms for Linear Stochastic Bandits". In: *Advances in neural information processing systems* 24 (2011).

Experimental Results: The Synthetic Dataset

Our proposed poLinUCB consistently outperforms other strategies. (Except for LinUCB (x and z) which equips with post-serving contexts in arm selection.)

Figure 2: Algorithms' cumulative regrets in three synthetic environments. The shaded area denotes the standard error computed using 10 different random seeds.

Experimental Results: The MovieLens Dataset⁴

Our proposed poLinUCB consistently outperforms other strategies.

(Except for LinUCB (x and z) which equips with post-serving contexts in arm selection.)

Figure 3: Algorithms' cumulative regrets in the MoiveLens Dataset. The shaded area denotes the standard error computed using 10 different random seeds.

C. Wang, Z. Ye, Z. Feng, A. Badanidiyuru, H. Xu

⁴F Maxwell Harper and Joseph A Konstan. "The MovieLens Datasets: History and Context". In: *Acm Transactions on Interactive Intelligent Systems* 5.4 (2015), pp. 1–19.

Method

Summary of Contributions

New framework:

Proposed a novel family of contextual bandits with post-serving contexts.

Enhanced lemma:

Introduced the Generalized Elliptical Potential Lemma (EPL).

► Algorithm and theory:

▶ Designed poLinUCB with a regret bound of $\widetilde{\mathcal{O}}(T^{1-\alpha}d_u^{\alpha} + d_u\sqrt{TK})$.

Empirical validation:

Achieved improved performance on synthetic and real-world datasets.

Thank you.

Please refer to our paper for more information:

https://arxiv.org/abs/2309.13896.