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Introduction




I Reinforcement Learning (RL)

RL 1s about training agents to learn to make sequential decisions to achieve goals.
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I Reinforcement Learning (RL)

RL 1s about training agents to learn to make sequential decisions to achieve goals.

Classical RL is Online

A\ requires online explorations

=

unsafe  time-consuming  costly

play actions by T,
©e

¢S >

b <

feedbacks

In reality, we often have massive pre-collected data
|—) update policy Tk41 _T (e.g., by human demonstration).
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Can we still train RL policies
without any online explorations?
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| Offline RL

Formally...
Offline RL
D = {(Sia a;, S,/i, Tz)}
s ~ d™5(s)

a~mg(als)
s' ~p(s'|s,a)
r < r(s,a)

) learn policy 77

i

a static dataset of trajectories
(pre-collected by any means)

Offline RL Objective

o No environment interactions T

. t
o No further data collections Mot Z Eg,~dm(s),a;~m(als) [’Y 7 (st at)}
t=0
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I Offline RL: Challenges

Fundamental challenge: erroneous extrapolation.

Offline RL Training data only contains:

— 4} [
R - N ————
,'/
W, V

) learn policy 77

a static dataset of trajectories
(pre-collected by any means)

What the policy wants to do...

= N K R Good?

) . ) Bad?
o No environment interactions

o No further data interaction

Online RL can tackle this by trial & error.

How may offline RL deal with potential out-of-distribution actions?

1. Introduction



| The Pessimism Principle in the Face of Uncertainty

Key idea: avoiding uncertain state & actions by explicit penalization.

« Wang et al. (2020) regularize the learned policy.
« Kostrikov et al. (2022) penalize the rewards..

 Kidambi et al. (2020) truncate transitions.

1. Introduction
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I The Pessimism Principle in the Face of Uncertainty

Output pollcy S X A
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Figure 1. An illustration of Pessimistic Markov Decision Process (P-MDP) by Kidambi et al. (2020).
Notice that the value of any policy in P-MDP will be the lower bound for the true value

HALT
() with minimal reward

{. } = data support
= unknown /), (1(: | s,a), P(- | s,a)) > a

- = known DTV([:)(' ‘ Sva)vp(' ‘ Sva)) <

Key idea: avoiding uncertain state & actions by explicit penalization.

« Wang et al. (2020) regularize the learned policy.
« Kostrikov et al. (2022) penalize the rewards..

 Kidambi et al. (2020) truncate transitions.
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What can go wrong for
pessimism based algorithms?



I The Fxcessive Pessimism Dilemma

A The policy may behave overly conservative, ends up too far away from achievable better performance.
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I The Fxcessive Pessimism Dilemma

A The policy may behave overly conservative, ends up too far away from achievable better performance.

r@) =1 r(fL) = 2 r(&8) = 10 Uncertain region

(Fitted MDP)

Classical Pessimistic MDP
will directly halts here.

No chance to get > iU} !

16



I The Fxcessive Pessimism Dilemma

A The policy may behave overly conservative, ends up too far away from achievable better performance.

r@) =1 r() =2 r() =10 r@orQ) =0 Uncertain region

(Fitted MDP)
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T _vpp = (L, L) Possible Path of mp_ypp

Halting too early - get at best [D :
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Can we find a principled way
to modulate pessimism?

(And to achieve a better performance guarantee... )



I The Excessive Pessimism Dilemma: Mitigating by Lookahead

A The policy may behave overly conservative, ends up too far away from achievable better performance.

r@) =1 r() =2 r() =10 r@or(Q) =0 Uncertain region

(Fitted MDP)
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Just look one step ahead...
D :

@
E
C

000 .
Fortunes (@or &) await for sure!

T _vpp = (L, L) Possible Path of mp_ypp

Halting too early - get at best [D :
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I The Excessive Pessimism Dilemma: Mitigating by Lookahead

A The policy may behave overly conservative, ends up too far away from achievable better performance.

r@) =1 r() =2 r() =10 r@orQ) =0 Uncertain region

(Fitted MDP)

— o O O S o

Lookahea
Pessimistic Pessimistic 1
J,

MDP
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|

-

Tip_mpp = (L, L) Possible Path of mp_ypp T p_mpp = (R, L or R)

Halting too early - get at best I:D . Possible Path of mip_ypp  Look 1 step ahead = get @D or better!

‘@' Lookahead enables a less conservative policy with better performance guarantee!
= 20



I Further Insights on Lookahead Pessimism

1. Introduction

Possible Path of mp_ypp

Possible Path of 1} p_ympp

Q The lookahead horizon modulates the pessimism level.
0 Lookahead helps circumvent uncertain areas by path stitching.

0 Lookahead implicitly increases the data coverage.



Our Contributions

Algorithm: Lookahead Pessimistic MDP.

Theory: a lower bound monotonically improves with the lookahead horizon K.

Experiments: solid improvement over baselines on benchmark environments.

(a) Grid world (b) Halfcheetah (c) Hopper (d) Walker2d

Dataset Environment LP-MDP | MOReL | MOReL | MOPO CQL | SAC-Off | BEAR | BRAC-p | BRAC-v
(Ours) (SAC) (NPG)

medium halfcheetah 42.6+5.5 434 42.1 54.2 44.4 -4.3 41.7 43.8 46.3
medium hopper 101.9 +1.1* 75.8 95.4 28.0 86.6 0.8 52.1 32.7 3.1
medium walker2d 64.5+5.1 76.8 77.8 17.8 74.5 0.9 59.1 77k 81.1
medium-replay | halfcheetah 48.5+2.1* 43.4 40.2 53.1 46.2 2.4 38.6 45.4 47.7
medium-replay | hopper 101.2 +0.8 101.1 93.6 67.5 48.6 355 33.7 0.6 0.6
medium-replay | walker2d 82.7 £5.9* 46.5 49.8 39.0 32.6 1:9 19.2 -0.3 0.9
medium-expert | halfcheetah 51.14+0.9% 41.6 53.3 63.3 62.4 1.8 53.4 442 41.9
medium-expert | hopper 103.7+1.2 785 108.7 23.7 | QNSO 1.6 96.3 1.9 0.8
medium-expert | walker2d 81.5+8.5" 68.0 95.6 44.6 98.7 -0.1 40.1 76.9 81.6
Average Scores | 677.7 * 5751 | 6565 | 3912 | 605.0 | 37| 4342 3281 332.0

Table 1. Results on D4RL. We report the averaged normalized scores of 3 different random seeds with one standard errors. We highlight
the best averaged scores by a blue box . Also, we use * to indicate the tasks where our method has a solid improvement over MOReL-SAC.

1. Introduction

Algorithm 1 Policy Learning under Pessimistic MDP with
look-ahead (LP(¢, m, K)-MDP).
Require: Offline data D, threshold &, look-ahead steps K,
and learning rate c.
1: Fit the dynamics model Mz on D
2: Initialize the policy 7o
3: forn=0,1,2,...do
4: Construct the LP(¢, w1, K)-MDP for 7,,: Mg"
5
6
1

Improve policy: Tn41 ¢ SAC-Step(mn, M3")

. end for
. return 7,

Pessimistic MDP with K-step Lookahead

Definition 3 (LP(¢, 7, K)-MDP) For any (si,a:), and
Mp and My, the LP(§, m, K)-MDP of My, (i.e, M)
is constructed by modifying the transition D to be p as:”

Case 1 (current transition is certain) If (s, a¢) ¢ U, then

ﬁ("shat) :ﬁ('lst7at)7 )]

Case 2 (current transition is uncertain) If (s;,a;) € U,
then

Case 2.1 (all K-step look ahead is uncertain)

If(St, at) (S uf(l:K)’ then

D(St+1 = elsy, ar) = 1, (10)

Case 2.2 (some km-step look ahead is certain)
If (s¢,ai) € Uf for some k € [K|, then we construct a
deterministic path such that¥ i € {1, ...,k — 1},

ﬁ(SHk = 3*|3t7at«,7r) =1, F(St+ia ) = —Rpax. (11)
where s* is defined as:
s = argmin Vi (s), (12)
P

5’65%‘;(8:@0

\ “The associated reward 7(-) := 7(-) unless otherwise stated. )

22
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We are all in the gutter, but some of us are looking at the stars.

— Oscar Wilde



Part 2
Methodology




I Preliminaries
'ﬁ‘ Intuition

If the current state-action pair 1s uncertain - don’t just halt!

Look a few steps ahead > 1if future states 1s promising w/ high certainty, go for it!

2. Methods
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Uncertainty Quantification

We first denote the estimation error on any pair (s, a) as
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I Preliminaries

'ﬁ‘ Intuition

If the current state-action pair 1s uncertain - don’t just halt!

Look a few steps ahead > 1if future states 1s promising w/ high certainty, go for it!

Uncertainty Quantification

We first denote the estimation error on any pair (s, a) as

d(s,a) = drv (p(|s,a)|p(-|s, @),

which quantifies the total variation distance from the esti-
mated distribution p to the true distribution p.

2. Methods

Classical Pessimism asks to halt at ...

Definition 1 (Uncertain State-Action Set) V & > 0, the
set of uncertain state-action pairs is

UE) ={(s,a) e S x A:d(s,a) >¢&}. (7)

For simplicity, we drop the dependency on £ in the notations.



I Partition Uncertain Regions

'ﬁ‘ We can further partition U by properties of some lookahead sets.

di < f dy > f
. . . e Ao memm
Associate Each Pair with Lookahead Sets I \i o
Definition 2 (Lookahead Set) For any (s;,a;) € S x A
under MDP M, with p'(-|-, -, m) denoting the transition
distribution relying on T, the ky-step lookahead set is Z/{ Uy Us U (1.9
E;{;{Z/(st,at) = {s € S| p'(star = 8|s¢,ar, ) > 0}.
- \ e
| !
do < f dy > f
Partition Criteria: Lookahead Certainty The set U thus can be partitioned into disjoint subsets by the
We say a state-action pair (s, @) is kg,-certain if for all the above lookahead certainty criteria. For all k € [1, K], we
states in its k-step lookahead sets, the fitted dynamics M5 define the subset Uy as
induces only a small estimation error, that is: Ur = { ) i-“;fblf . (R T tain} .
Vs' € L34 (s,a), d(s',m(s")) <&, 8)
We further use UT ;.o = U \ U{Z U to denote all the
where d(s, (8)) = MaXg.7(a|s)>0 d(s,a). remaining state-action pairs in .
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Pessimistic MDP with K -step Lookahead

Definition 3 (LP(¢, 7, K)-MDP) For any (s, a;), and
Mz and M, the LP(§, 7, K)-MDP of M,, (i.e., Mg)
is constructed by modifying the transition p to be p as:*

Case 1 (current transition is certain) If (s, a;) ¢ U, then

p(-|ss, az) = p(-|s¢, ay), )

Case 2 (current transition is uncertain) If (s¢, ay) € U,
then

Case 2.1 (all K-step look ahead is uncertain)

If (s¢,a;) € UT 1.k then

ﬁ(st.;_l = e|3t,at) = 1, (10)

Case 2.2 (some kwy-step look ahead is certain)
If (s¢,a;) € U for some k € K], then we construct a
deterministic path such thatV i € {1,...,k — 1},

ﬁ(3t+k = 3*|8t7at77r) =1, f7"v(3t+z‘7 ) = e ()

where s* is defined as:

5

s*= argmin Vi (s), (12)
s’EE;/’t’; (st,at) !

“The associated reward 7(-) := 7(+) unless otherwise statedj

.

| Construct Lookahead Pessimistic MDP

Traj. in M,
k s'teps

/Classical Pessimism Principle

 Halts at the uncertain state s;

Lookahead Pessimism

K Has a better worst-case guarantee

* Constructs a less conservative path: sy > s*

~

/
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| The Algorithm

2. Methods

Algorithm 1 Policy Learning under Pessimistic MDP with
look-ahead (LP(&, m, K)-MDP).

Require: Offline data D, threshold &, look-ahead steps K,

s BN I o

and learning rate a.

Fit the dynamics model Mz on D

Initialize the policy mg

forn=0,1,2,...do
Construct the LP(§, 7, K)-MDP for m,,: MZ"
Improve policy: m,4+1 < SAC_Step(my,, MZ")

end for

return T,
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Theoretical Analysis




| The Suboptimality Bound

Theorem 1 (Performance of the Equilibrium Policy) Ler 7 denote the equilibrium policy learned under the
LP({, 7, K)-MDP, and let ™™ be the optimal policy under the true MDP M,,. Suppose that for any (s¢,a;) € U] ’

with k € [1, K], E%M*;)k(st, a;) C ,er\:[;k(st, a) holds, then for any state s

Vi (8) = Vi (s)

71_*

* s—>u7~"*
207 o E|y a0 | Ry,
< 47§ Rmax R (15)
RN 1—7 )
(Va) (b) Incurred by;lztting Uf?lt K)

K w
T* E 7-.:—)“%* k—1 2/\ ['R . /"Aﬁ*'/‘a Z/{‘T*
"|_ pg—)b{}f* 6 k Z[:,L Ji m:\x+ ) P,q ( k ) .
k=1

(c) Incurred by hitting U™ for k€ [K]

3. Theoretical Analysis
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Theorem 1 (Performance of the Equilibrium Policy) Ler 7 denote the equilibrium policy learned under the
LP({, 7, K)-MDP, and let ™™ be the optimal policy under the true MDP M,,. Suppose that for any (s¢,a;) € U] ’

with k € [1, K], L%M*f(st, a;) C L’%M*;k(st, at) holds, then for any state s

Vi (s) = Vi (s)

™ 8_)ui*lzK
hitting the known region << 2ps—>uj*(*1.K)E Y R | B e
< 4’Y€Rmax ’
(@ (b) Incurred by hitting Uf?lt %

K ¥
* E Ts:u** k—1 'R = /cAW* ke ufr*
+ ,03_>uk;* 6 k Zi:,l_ ) max T 7 p,q ( I )
k=1

(c) Incurred by hitting U] for k€ [K]

3. Theoretical Analysis
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Ly e U e
hitting the known region << 2ps—>L{j*(*l.K) |y Rmax
< 47€Rmax ’
AN 1= /
(@ (b) Incurred by hitting Uf?lt K)

K ¥
* E Ts:u** k—1 'R = /cAW* ke ufr*
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| The Suboptimality Bound

Theorem 1 (Performance of the Equilibrium Policy) Ler 7 denote the equilibrium policy learned under the
LP({, 7, K)-MDP, and let ™™ be the optimal policy under the true MDP M,,. Suppose that for any (s, a) € U} ’

with k € [1, K], L%M*;k(st, a;) C L’%M*%k(st, a) holds, then for any state s

Vi (s) = Vi (s)

T* s—)L{i* K
hitting the known region << 2ps—>uj*(*1.K)E a Lo (- R
< 47€Rmax ’
(@ (b) Incurred by hitting Uf?lt %

*

K
* 7;: F* k—1 £ X ﬂ-*./‘, 7\(* . . .
_|_Z pz—mg*E l,y U7 ](Zz’:l 29 R -+ A7 (UL )) >>> hitting the unknown region
—1 & some k-step lookahead is certain

>

(c) Incurred by hitting U] for k€ [K]
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| The Suboptimality Bound

Theorem 1 (Performance of the Equilibrium Policy) Ler 7 denote the equilibrium policy learned under the
LP({, 7, K)-MDP, and let ™™ be the optimal policy under the true MDP M,,. Suppose that for any (s¢,a;) € U] ’

with k € [1, K], L%M*f(st, a;) C L’%M*;k(st, at) holds, then for any state s

Vi (s) = Vi (s)

Ly e U e
hitting the known region << 2ps—>L{j*(*l.K) |y Rmax
< 47€Rmax ’
AN 1= /
(@ (b) Incurred by hitting Uf?lt K)

K x
* Ts: e k=14 ; kAT k1 5% o .
"'"Z Pzﬁuk;*E !fy uy ](Zi_l_ 27 Riax + Ap.(y (U )) > hitting the unknown reglon .
—1 & some k-step lookahead is certain

>

(c) Incurred by hitting U] for k€ [K]

Q Monotonically improves with K = guaranteed better lower bound than existing work!

3. Theoretical Analysis 36



Part 4
Experimental Results




I Datasets

Popular benchmark suite used in many papers (Kidambi et al., 2020, etc.).

&

T .

(a) Grid world (b) Halfcheetah (c) Hopper (d) Walker2d
Figure 4. Visualization of considered tasks. (a) The grid world task is adapted from Eysenbach et al. (2022) with increased difficulty. The
agent starts where the baymax is located (top left corner). The reward for hitting the treasure is +50, +1 for yellow-shaded grids, and
+0.5 for other grids. The walls cannot be crossed. For (b), (¢) and (d), the tasks come from the D4RL benchmark (Fu et al., 2020).

4. Experimental Results
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I Results: Performance Improvement

Dataset Environment LP-MDP | MOReL | MOReL | MOPO CQL | SAC-Off | BEAR | BRAC-p | BRAC-v
(Ours) (SAC) (NPG)
medium halfcheetah 42.61+5.5 43.4 42.1 54.2 444 4.3 41.7 43.8 46.3
medium hopper 101.9 +1.1* Fio - 95.4 28.0 86.6 0.8 321 327 Sl.1
medium walker2d 64.5+£5.1 76.8 21.8 17.8 74.5 0.9 591 FlD 81.1
medium-replay | halfcheetah 48.5+2.1* 434 40.2 Sl 46.2 2.4 38.6 454 47.7
medium-replay | hopper BRI (). 8 101.1 93.6 67.5 48.6 5:3 S50 0.6 0.6
medium-replay | walker2d 82.7 +5.9* 46.5 49.8 39.0 32.6 1.9 19.2 -0.3 0.9
medium-expert | halfcheetah 51.1+0.9% 41.6 3.3 63.3 62.4 1.8 53.4 44.2 419
medium-expert | hopper 163761 2¢ 185 108.7 23.7 | - 1.6 96.3 1.9 0.8
medium-expert | walker2d 81.5+8.5" 68.0 95.6 44.6 98.7 -0.1 40.1 76.9 81.6
Average Scores 677.7 " 575.1 656.5 3912 605.0 Ol 434.2 328.1 332.0

Table 1. Results on D4RL. We report the averaged normalized scores of 3 different random seeds with one standard errors. We highlight
the best averaged scores by a blue box . Also, we use * to indicate the tasks where our method has a solid improvement over MOReL-SAC.
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I Results: The Effect of Lookahead Horizon K

&E=0.05 & =g.1 e =015 - =02
25 25 — O O E—  — T e E——
7 7 —— LP-MDP (K=1)
£ o LP-MDP (K=2) 20
E |
& 6 6 —_— MnM |
L 10 10 f
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Iterations Iterations Iterations Iterations

Figure 5. Results on the gridworld task. The dashed green curve is the performance of the expert policy obtained with MnM (Eysenbach
et al., 2022). The shaded region is the one standard error of three trials with different random seeds.
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I Policy Behaviors

4. Experimental Results

Llyiviv|ly > > Fly v|iv v > |

‘-—;Fivvvv >>fvvvvv <[<|A
Yiv|v|v|v/<@8>o[d]v|v|v|v| v /«@Evy v A

s Tiv|v v« > P [y v vy [« EEEE y |y <«

V. "”r‘-—b i--—--—--b' r—-—blA><<< V <« < |«|=
‘--—H >>>*—--#l A A Al» A <« |« = v A |«

' AA A A A<l < AA|> A «|«lfE A |« <« ==
AlAlA]A S y A A|A|«|A|A EEE A<=
AAAA«A«dj«a|«|dA]|>»|A|hA )| <« «a|y |y =
AlA[ala[afa|«|<«|<«|aafalalaa]«]«[a]a]»

Figure 6. A visualization of the policies. The policy (left)

is the one learnt under LP-MDP with £ = 2 and £ = 0.15. In the
middle, the green policy is the expert policy learnt using MnM (Ey-
senbach et al., 2022). Lastly, the red policy corresponds to the one
learnt using MOReL. The grey trajectories are possible paths from
the starting grid to the treasure by following the learned policies.
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I Summary

Key Takeaways

 Don’t be pessimistic too early; be far-sighted!

» (lassical pessimism principle can result in
rather sub-optimal policy.

* Model lookahead helps modulate pessimism,
giving better guarantee.

. --OF
Future directions ok FUACS%"}}ZE

WORLDS/

e Offline-to-Online RL.

 RL as sequence modeling problem (i.e.,
return/goal conditioned imitation learning).

5. Summary 42
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