
Generalization and Memorization in Sparse Neural Networks

A. Notes on Information in Deep Neural Networks

As a supplement to Section 3, we here provide a detailed discussion on information in deep neural
networks. Consider a classification task with a conditional distribution p(y|x), where the random
variable x ∼ p(x) denotes an input (e.g., an image) and the random variable y ∈ Y = {1, · · · , C}
denotes the target. Let D = {(xi, yi)}Ni=1 be a training dataset i.i.d. sampled from p(x, y) =
p(x)p(y|x). A neural network f(·;θ) with the weight parameter θ ∈ Rd encodes a conditional
distribution qθ(y|x) by fitting the dataset. We denote the network prediction for xi as ŷi.

The objective is to minimize the negative log likelihood loss (i.e., the cross-entropy loss) on D:

min
θ
LD(θ) =

1

N

N∑
i=1

ℓ(xi, yi;θ) (A.1)

=
1

N

N∑
i=1

− log qθ(yi|xi). (A.2)

We take the mini-batch stochastic gradient descent (SGD) for the minimization. Let B = {(xi, yi)}NB
i=1

denotes a random mini batch i.i.d. sampled from D. The average loss gradient of the random mini-
batch is defined as ∇θLB(θ) =

1
nB

∑
xi∈B∇θℓ(xi, yi;θ). Given a learning rate η and time step t, we

update the weight parameter by:

θt+1 ← θt − η∇θLB(θ). (A.3)

We introduce KL divergence (also termed as relative entropy) as a useful notion for the following
discussion; it can be seen as an intrinsic dissimilarity metric for distributions (Kullback and Leibler,
1951). For any two distributions qθ(·) and qθ′(·), the KL divergence between them is:

DKL(qθ(·)∥qθ′(·)) ∆
= Eqθ(·)

[
log

qθ(·)
qθ′(·)

]
. (A.4)

A.1 Fisher Information

In this sub-section, we first introduce Fisher information from its original parameter estimation
view (Fisher, 1922). However, we note that this view is unsuitable in the context of deep learning,
thus we discuss an alternative view by taking Fisher information as a local distance metric
for distributions. This will foster the interpretation of Fisher information as a measure for
information retained by the neural network, and lay a good foundation for understanding the
role of Fisher information in the optimization dynamics and generalization.
Definition A.1. (Fisher information — an estimation view). Imagine θ as an unknown
parameter modeling a distribution qθ(·). Assuming the log likelihood function log qθ(·) is differentiable,
we define the score function of qθ(·) as the gradient of the log likelihood function log qθ(·):

s(θ)
∆
= ∇θ log qθ(·). (A.5)

The Fisher information of qθ(·) is defined as the covariance of the score function:

F(θ)
∆
= Covqθ(·) [s(θ)] (A.6)
(a)
= Eqθ(·)

[
(∇θ log qθ(·))(∇θ log qθ(·))⊤

]
, (A.7)

where (a) follows from the fact that Eqθ(·) [s(θ)] = 0.
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Remark A.1. For neural network parameterized by θ, F(θ) is the fitted gradient covariance of the
negative log likelihood loss ℓ(xi, ŷi;θ), that is F(θ) = Covxi∼D,ŷi∼qθ(y|x) [∇θ log qθ(ŷi|xi)].

As a side note, it is important not to confuse this with the training gradient covariance, i.e., the
empirical Fisher information, in which ŷi above is replaced with the true target yi ∼ p(y|x). The
emprical Fisher information may be used to approximate the Fisher information yet it has some
limitations (Kunstner et al., 2019), which are not of interests of discussions here.

This classical view is concerned with the parameter estimation problem, and θ is treated as an
unknown parameter characterizing a distribution qθ(·). A high F(θ) implies that the likelihood
function qθ(·) is rapidly varying,1 i.e., the likelihood is easily affected by the choice (or value) of θ;
thus it is easy to infer the true value of θ by sampling data from qθ(·); in other words, the samples
can can provide high amount of information to estimate the unknown parameter θ.2

However, the estimation view is fundamentally improper to analyze neural networks. In the context
of deep learning, θ is rather a known parameter (i.e., network weights) controling the prediction
distribution. It is meaningless to estimate θ through sampling from predictions. The point of focus
is not the information that samples from predictions can provide about θ, but rather the information
that θ can provide about the neural network learning process (little literature has explicitly noted
this slight distinction, but it can bring potential confusions).

Learning is a dynamic process. The weight parameter θ is ever changing (updating) with SGD; it is
natural to think of the information of θ from a variation perspective.3 Intuitively:

If small variation in θ results in large discrepancy to the network prediction distribution qθ(·),
this θ can be seen as to withhold high amount of information about the learning process.

We hereby introduce Fisher information as a local metric for such distribution discrepancy.

Lemma A.1. Assume that the log likelihood function log qθ(·) is twice differentiable, and denote its
Hessian with respect to θ as Hlog qθ(·). The Fisher information of qθ(·) equals the negative of the
expected Hessian (i.e., second derivative) of the log likelihood function, that is:

F(θ) = −Eqθ(·)
[
Hlog qθ(·)

]
. (A.8)

Proof. Let’s instantiate the likelihood function by qθ(z), where z ∼ qθ(z).4 Then,

Hlog qθ(z)
∆
= ∇2

θ log qθ(z)

= ∇θ
∇θqθ(z)

qθ(z)

(a)
=

qθ(z)Hqθ(z) −∇θqθ(z)∇θqθ(z)
⊤

qθ(z)qθ(z)

=
Hqθ(z)

qθ(z)
−
(
∇θqθ(z)

qθ(z)

)(
∇θqθ(z)

qθ(z)

)⊤

, (A.9)

where (a) follows from the quotient rule and Hqθ(z)
∆
= ∇2

θqθ(z).

1. In this note, qθ(·) may denote a distribution or a likelihood function. We will add clarifications when necessary.
2. Plus, Cramér–Rao Bound (Cramér, 1946) shows the precision of any unbiased estimator for θ is at most F(θ).
3. Notice how this differs from the common definition of information by Shannon entropy, which considers information

about the static distribution per se, instead of the change of the distribution by the local parameter variation
which we are discussing. An important prior work of this is Achille et al. (2019).

4. The random variable z can be viewed as a imprecise shorthand notation for y|x in our context.
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Taking expectation on Eq. A.9:

Ez∼qθ(z)

[
Hlog qθ(z)

]
= Ez∼qθ(z)

[
Hqθ(z)

qθ(z)
−

(
∇θqθ(z)

qθ(z)

)(
∇θqθ(z)

qθ(z)

)⊤
]

=

∫
Hqθ(z)

qθ(z)
qθ(z)dz− Ez∼qθ(z)

[(
∇θqθ(z)

qθ(z)

)(
∇θqθ(z)

qθ(z)

)⊤
]

=

∫
∇2

θqθ(z)dz− Ez∼qθ(z)

[
∇θ log qθ(z)∇θ log qθ(z)

⊤]
(b)
= ∇2

θ

∫
qθ(z)dz− F(θ)

= −F(θ), (A.10)

where (b) follows from Definition A.1. Thus F(θ) = −Eqθ(·)
[
Hlog qθ(·)

]
.

Corollary A.1. (Fisher information — a metric view). Given two distributions qθ(·) and qθ′(·)
parameterized by θ and θ′ respectively and assuming their likelihood functions are twice differentiable,
we have the Fisher information of θ as the following:

F(θ) = ∇2
θ′DKL (qθ(·)∥qθ′(·))

∣∣
θ′=θ

. (A.11)

Proof. By definition in Eq. A.4 and instantiating the likelihood function with the random variable z,
the gradient of the KL divergence can be decomposed as:

∇θ′DKL (qθ(z)∥qθ′(z)) = ∇θ′Ez∼qθ(z) [log qθ(z)]−∇θ′Ez∼qθ(z) [log qθ′(z)]

= −∇θ′Ez∼qθ(z) [log qθ′(z)]

= −
∫

qθ(z)∇θ′ log qθ′(z)dz.

Thus, the second derivative of the KL divergence with regard to θ′ evaluated at θ′ = θ is:

∇2
θ′DKL (qθ(z)∥qθ′(z))

∣∣
θ′=θ

= −
∫

qθ(z)∇2
θ′ log qθ′(z)

∣∣∣∣
θ′=θ

dz

= −
∫

qθ(z)Hlog qθ(z)dz

= −Ez∼qθ(z)

[
Hlog qθ(z)

]
(a)
= F(θ), (A.12)

where (a) follows from Lemma A.1. Thus F(θ) = ∇2
θ′DKL (qθ(·)∥qθ′(·))

∣∣
θ′=θ

.

Corollary A.2.. [Fisher information and the 2nd order approximation of KL divergence]
Given a distribution qθ(·) paramertized by θ, consider perturbing the parameter by ϵ such that
θ′ = θ + ϵ, the KL divergence5 of the two distributions is:

DKL (qθ(·)∥qθ′(·)) = 1

2
ϵ⊤F(θ)ϵ+ o(∥ϵ∥22) . (A.13)

5. It is easy to verify that the sign of ϵ does not affect the result in Eq. A.13; in this regard, Fisher information may
be considered as a symmetric metric in the distribution space.
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Proof. Instantiate the likelihood function with the random variable z. The second order Taylor
expansion of log qθ′(z) with regard to θ is given as:

log qθ′(z) = log qθ(z) +∇θ log qθ(z)
⊤ϵ+

1

2
ϵ⊤∇2

θ log qθ(z)ϵ+ o(∥ϵ∥22). (A.14)

We then expand the KL divergence between the two distributions by:

DKL (qθ(z)∥qθ′(z)) = Ez∼qθ(z) [log qθ(z)− log qθ′(z)]

(a)
= Ez∼qθ(z)[log qθ(z)− log qθ(z)−∇θ log qθ(z)

⊤ϵ− 1

2
ϵ⊤∇2

θ log qθ(z)ϵ+ o(∥ϵ∥22)]

= −Ez∼qθ(z)

[
∇θ log qθ(z)

⊤ϵ

]
− Ez∼qθ(z)

[
1

2
ϵ⊤∇2

θ log qθ(z)ϵ

]
+ o(∥ϵ∥22)

= −
∫
∇θqθ(z)

⊤

qθ(z)
qθ(z)ϵdz−

1

2
ϵ⊤Ez∼qθ(z)

[
∇2

θ log qθ(z)
]
ϵ+ o(∥ϵ∥22)

(b)
= −ϵ⊤∇θ

∫
qθ(z)dz+

1

2
ϵ⊤F(θ)ϵ+ o(∥ϵ∥22)

= −ϵ⊤∇θ1+
1

2
ϵ⊤F(θ)ϵ+ o(∥ϵ∥22)

=
1

2
ϵ⊤F(θ)ϵ+ o(∥ϵ∥22), (A.15)

where (a) follows from Eq. A.14, and (b) follows from Lemma A.1 that F(θ) = −Ez∼qθ(z)

[
Hlog qθ(z)

]
.

Thus DKL (qθ(·)∥qθ′(z)) = 1
2ϵ

⊤F(θ)ϵ+ o(∥ϵ∥22).

This metric view offers a sensible interpretation on common trends of the Fisher information of
qθ(y|x) during network training. Relatively speaking:

• Low F(θ): This implies that the gradient update will not change the prediction distribution
much. It usually happens at (1) the early phases of training, where the prediction distribution is
close to random, and a small variation to the parameter of the random will have little influence
on the distribution; or (2) the ending phases (or converging phases), where the training is
rather stabilized and the prediction distribution are close to true distribution, thus the gradients
are close to zero, leading to a low Fisher information (also see Remark A.1).

• High F(θ): This implies that even a small perturbation to the parameter can bring large
discrepancy of the network prediction. Empirically, this typically happens when the network
is (1) learning new concepts (cf. Achille et al. (2019)), or in other words at the fitting phase
(in contrast to the generalization phase, cf. Shwartz-Ziv and Tishby (2017), especially on the
relation to the gradient signal-to-noise ratio), or (2) memorizing many hard or noisy examples
(cf. Jastrzebski et al. (2021)).

Often, F(θ) will first increase, then drop, leading to a (skewed) bell-shaped trend during training.
Thus the learning process appears to be crossing a barrier or a bottleneck.

The advantage of F(θ) as a metric for the information content of neural networks is that it provides a
dynamic (or variation) perspective compatible with the dynamic learning process, and it is relatively
easy to compute. However, the limitation is also obvious — it can only serve as a local metric.

Next, we discuss other metric to capture the information content in the neural networks, and will
offer a general big picture on the connections between them.
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