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Research Goal: In Pursuit of Superbuman Intelligence

Design scalable methods for intelligence to perform complex

sequential decision making to achieve goals in the open world.

TTTTTTTTTTTTTTT



Agenda for Today’s Talk

Intro: Learning as an Game

Self-Play to Align

Self-Play to Reason

4 N a
- ~ evolve prompts high-level guidance
Conventional Training > >
. creator Solver Planner actor
as a Finite Game . ) 4 (515 p o (yls 5™
15 < Yix <
propose responses low-level feedback
Classical RLHF The Creator Step
i e {x} 2 ([} 2 { — ot -}
Open-Ended RLHF: weighted O proximal
xe={x} 1% subset (=) Xes1 = evolved ({xh) PROOF FINTSHED
e N
o .
NeW, Scalable Tralnlng Algtl)nthtm. 1.:‘1&: %volvingv : 1 fm :X ic Self-Play Algorithm 1 RiR A Unjied R T oy o=
. nput: initial policy 7, initial prompt set Xy
as an Inﬁnlte Game 1: foriterationt — 1,2, ... do Input: problem statement q, a language model w/ parameter 6
creator step 1. « Tree(6,q)
2:  estimate informativeness: X1 {(xi,info(x:)) | xi € X1} 2: repeat
sample subset: X/1]° « sample(X, ;) 3: 8] .policy()
self-evolve prompis: X, « evolve(Xi"i°) 4: tree ¢ Tree(6, s;)
- solve er 5: repeat
3 self-generate responses: V@i € X, generate {3} ~ mo,_, (- | 1) 6: Ys = tree.policy()
annotate rewards: X« X, u{y?,r)} 7 until STO?’LOW
preference optimization: 00 011 — NV oLy (8) g; nth smpﬁﬁ} -update()
N~ 7 ‘;f end for 10: return tree.solution
: return final solver policy 7,
\§ J




Intro:
Learning as an Infinite Game

“a paradigm shift for training large models”
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The Vision: “Universality of Computation”

6. The universal computing machine.

It is possible to invent a single machine which can be used to compute
any computable sequence. If this machine 10 is supplied with a tape on
the beginning of which is written the S.D of some computing machine M,
then W will compute the same sequence as .Al.

— Alan M. Turing, 1936

“what a human can think or know”

“what a machine can compute”



The Challenge: Gaps in Achieving Human-Level Performance

Code Generation
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https://arxiv.org/pdf/2411.04872v1
https://livecodebench.github.io/

The Challenge: Scaling Law is Hitting the Wall? =\

“Ilya Sutskever, co-founder of Al labs Safe Superintelligence (SSI) and
OpenAl told Reuters recently that results from scaling up pre-training - the
phase of training an Al model that use s a vast amount of unlabeled data
to understand language patterns and structures - have plateaued.”

““The 2010s were the age of scaling, now we're back in the age of wonder
and discovery once again. Everyone is looking for the next thing,””
Sutskever said. ““Scaling the right thing matters more now than ever.””

— Ilya Sutskever with Reuters, Nov 2024



Conventional Way of Agent Training

a given “world” a single “policy”

@ Intelligence: Agents thatare able to learn to make decisions to achieve goals.
A =

A Reasoning:  The process of making decisions by evaluating information.

B Alignment: The process of achieving goals by reward maximization.




Myth 1: Learning 1S Purely SOlViI’lg (under a given world)

. . &
a given world Conventional way: =
Design agents that find solutions in a fixed environment,
then stop learning.

the open-ended worlds
Better way:

@ a @ Design agents that create new tasks/environments,
ﬂ ﬂ - then continuously learn to self-improve.


https://arxiv.org/abs/2407.10583

Myth 2: Reasoning is Step-by-Step (by a single policy)

Better way:

Learn policies with a hierarchy of abstract models,
and roll out at different levels for optimization.

Conventional way: %
Learn a policy that operates under a one-step model,
and roll it out (with tree search) in training.

Fig 1. A world can be divided at different levels
in certain hierarchy (Dayan and Hinton, 1992).
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https://x.com/RichardSSutton/status/1813987506200957103
https://www.ece.uw.edu/wp-content/uploads/2024/01/lecun-20240124-uw-lyttle.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf

A New, Scalable Training Paradigm

“There are at least 2 kinds of games. One could be called finite; the other infinite.”

e A finite game is played for the purpose of winning.
e Aninfinite game is for the purpose of continuing the play.

s

Conventional Training
as a Finite Game

. (4§ » . (€9 . »
a given “world a single “policy

—>
-—

— James P. Carse, 2011

s

New, Scalable Training
as an Infinite Game

open-ended worlds

o9 — R
@ — &}

~

hierarchical policies

p;
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https://arxiv.org/pdf/2307.11046

A New, Scalable Training Paradigm

“There are at least 2 kinds of games. One could be called finite; the other infinite.”

e A finite game is played for the purpose of winning.
e Aninfinite game is for the purpose of continuing the play.

( )

Conventional Training
as a Finite Game

— James P. Carse, 2011

s

New, Scalable Training
as a Infinite Game

~
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https://arxiv.org/pdf/2307.11046

Recap on Agenda

Self-Play to Align

Self-Play to Reason

evolve prompts
creator solver
nf < 7I1€|x

propose responses

Classical RLHF The Creator Step
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e {n} 200 {

=

— {mmx.) e ,m}

°
Open-Ended RLHF: eva weighted ° imal oo
P swpLe Limplng ° ovimg 8,0 &
o Cmtop y, astor & == (e o Zwolving o o,
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xe={x} X subset ({x}) Xes1 = evolved ({x})

Algorithm 1 eva: Evolving Alignment via A ic Self-Play

Input: initial policy g, initial prompt set Xo
1: for iteration ¢t = 1,2,. .. do

creator step

2:  estimate informativeness: X1 {(xi,info(x:)) | xi € X1}
sample subset: X0 ¢+ sample(X, 1)
self-evolve prompts: X: + evolve(X;"{°

solver step

3:  self-generate responses: V@ € X,, generate {y} ~ 7o, , (- | 2:)
annotate rewards: X« X, u{y?,r)}
preference optimization: 0. 01 — VoL (0)

4: end for

5: return final solver policy o,

high-level guidance
Planner actor
me(s*|s) < e (yls,s*)
low-level feedback

Actor: low-level reasoning (e widih -

PROOF FINISHED

Algorithm 1 RiR - A Unified R ing Mechanism with D ing and Search

p

Input: problem statement g, a language model w/ parameter 6

Yt < tree .policy()
until STOP_LOW
tree, tree}.update()
9: until STOP_HIGH
10: return tree.solution

1: tree « Tree(0,q)

2: repeat

3: 8] « tree.policy()
4: tree < Tree(, s7)
5: repeat

6:

i

8:

Solving Myth 1:
Going Beyond Static World




Self-Play to Align:
The Creator-Solver Game

“Scalable language model training beyond bhuman prompts.”

Google DeepMind
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https://arxiv.org/pdf/2411.00062

TL; DR

We identity learnable, worth-learning prompts by reward signals,

then evolve new prompts for open-ended continual RLHF training.

The Creator Step

/ClaSSical RLHF ESTIMATE {xi} LM, { } M { } _ {info(x,—) = pmax _ r?““}

Xo
weighted e o imal L
proximal (]
SAMPLE sampling o evolving [ J o
& —_— o o P %o
EVOLVE by info(x) byanLLM ®e

Xt = {Xi} Xzi:nfo= subset ({Xz}) Xt+1 = evolved ({xi})

Fig 2. The easy-to-implement pipeline of eva for open-ended RLHF.
Open-Ended RLHF: eva

MT-Bench Arena-Hard AlpacaEval
creator creator .90 o 60.1 55.53
Xo » X1 » X2 .. :
-~ -~ ~ 51.68
She B S
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Fig 1. RLHF needs a paradigm shift! Fig 3. eva brings strong alignment gain.



Artificial Intelligence May Be Bottlenecked by Static Data

Reference: Villalobos et al.. 2024
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Fig 5. The 1mbalance dlstrlbutlon of static tralmng data.

See also: [msys-hard

Can language models identify and self-create new, learnable, and worth-learning tasks,

to self—improve to generalize better for alignment?
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https://arxiv.org/pdf/2211.04325
https://lmsys.org/blog/2024-05-17-category-hard/

Classical RLHF

Alignment by RLHF. Classical RLHF (Ouyang et al., 2022) optimizes on a fixed distribution D:

0% B,y () [r<x, y) ] ~Exp| 8- Dre | 7oy | %) || ser(y | %) ]] S

where x and y denote the prompts and responses, and r (-, -) is the reward function.

17



Our Perspective: RLHF Should Be Made Open-Ended

Definition 1 (Open-Ended RLHF) We define evolving alignment as the open-ended joint
optimization on the prompt and response policy for alignment w.r.t the joint reference policy:

7T¢’9(X, Y) || 7Tré’f(xa Y) ) (7)

I?)aex IEXN7T¢(')7 y~me(|x) [T(Xa y) ] T B ’ DKL

where Ty (X,y) := Tg(X) - To(y | X) and Tp(X,y) = Prep(X) - wspr(y | %)%

“This generalizes classical RLHF (Eq. 1). One may extend the above and rewrite coefficients to be:

maxe o Exnny ()| Bymmg(x) [7(%¥)] — Bl [mo(y|x) || wser(y|x)] | — Bz Dko |7 (x) || Pres(x)| . (8)
[} g ] L J

However, directly optimizing this can be intractable or unstable... &

18

See also: Open-Endedness is Essential for Artificial Superhuman Intelligence



https://arxiv.org/abs/2406.04268

Our Method: Open-Ended RLHF via Creator-Solver Games

@ How? Optimization by Asymmetric Games

evolve prompts
IS

maxg,p EXW(_)[ By om0 | 7%, ¥) | = B Dic [mo(y | %) || Tsen(y | %)] }—52- DKL[%(X) || Dret(x) creator solver

(] ]
Ty < Tty|x

creator propose responses

@ Whar? The Regret of the Solver’s Policy

Regret(my, mg) = Ex~ry () [EyNﬂe(ym) [ r(X,y) ] - Ey~wﬁ(y|x) [ r(x,y) H

@® Why? The Minimax Regret Strategy at the Nash Equilibrium

* .
Ty|x € aIgmin max Ex~mx [ Regret(x, my|x) ]
Ty|x

However, w/o access to the true 7, we must approximate this regret... =
g (?

19



Our Method: Open-Ended RLHF via Creator-Solver Games

@ How to approximate the regret? Simply use the stochastic policy...

Sample N times from the policy,
then choosing the reward gap between the best and the baseline.

|Reéret (X, 7T9)| — il’lng (X) s T’(X, y+) - T’(X, Ybaseline)a

y4 = argmaxy r(X,y),

Ybaseline = aI'g minyi T(Xa Y) O Ybaseline := aVEy,, T(Xa Y)

@ Other intuitive interpretations of eva *

Learning potential. Auto-curricula for the solver player.

Worst-case guarantee. Auto-curricula inherent to contrastive learning.

20


https://research.google/blog/paired-a-new-multi-agent-approach-for-adversarial-environment-generation/

The eva Algorithm

Algorithm 1 eva: Evolving Alignment via Asymmetric Self-Play

Input: initial policy e, , initial prompt set Xp
1: for iterationt =1,2,...do

creator step

2 estimate informativeness: Xi—1 + {(xs,info(x;)) | x; € Xi—1}
sample subset: X"t + sample(X;—1)
self-evolve prompts: X + evolve(X;"i°)
solver step
3: self-generate responses: YV x; € Xy, generate {yzJ )} ~Te,_, (-] @)
annotate rewards: X! — X U{(@?, r9}
preference optimization: 0, — 0,1 — an,C x! (8)
4: end for

5: return final solver policy e,

Fig 6. eva requires only a creator module addition to make current RLHF pipeline open-ended.
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The Creator Step: Estimate, Sample then Evolve

The Creator Step

ESTIMATE {xz} ﬂ’{ y.(l) } — { r } —»{info(xi) = r?‘ax—r?‘i“}
l l

weighted proximal
SAMPLE sampling evolving
& —_—  ———
EVOLVE bylinfo (x;) by evol(x;)
infi
Xt = {xi} Xt{-n = subset ({xl}) Xt+1 = evolved ({xz})

.

Fig 7. eva currently uses the estimate, sample then evolve procedure for the creator.

Here, info (-) is the reward gap, andlevol (-) can be any prompt creation method.

22



Example Evolving Method: evol ( -)

We use Evollnstruct (Can et al., 2023) for in-depth evolving and in-breadth-evolving.

Initial prompt | : MUTATION_TEMPLATES = {

If a man smokes 1000 cigarettes a day, why is he getting healthier? # oo —omeeee-
"CONSTRAINTS": prompt.format(
"Add one more constraints into '#The Given Prompt#'"

)’
"DEEPENING": prompt.format(
Evolved #1 i (ln_depth evolving) "If #The Given Prompt# contains inquiries about certain issues,
- the depth and breadth of the inquiry can be increased."
. . . . . ),
Elaborate on the seemingly paradoxical situation where an . "CONCRETIZING": prompt. format(
. .. . . 1. . . "Please replace general concepts with more specific concepts."
individual consumes 1000 cigarettes daily yet exhibits signs of : ) Rt o L st E
improving health, delineating the factors that could underlie . PLEIELED 1S SIS S D el sal .
: "If #The Given Prompt# can be solved with just a few simple
SLlCh an unexpected outcome. . thinking processes, you can rewrite it to explicitly request

multiple-step reasoning."

Evolved #2 | (¢n-breadth evolving)

X . . . "BREADTH": prompt.format(
Discuss thC COHuﬂdI‘qu ofa pCI‘SOH drmkmg d gaﬂon Of . "By inspiration from #The Given Prompt#, create a new prompt.

. . . " This new prompt should belong the the same domain as it, but be
w €V€I'y hOUI' but dlsplaymg unusually d€€p and even more rare. The length and complexity should be similar. The

restful sleep patterns, €Xp101'i1’1g possible explanations for this #Created Prompt# must be reasonable and must be understood and
responded by humans."

unusual phenomenon.
p



https://arxiv.org/abs/2304.12244

Results: Remarkable Gains on Hard Benchmarks*!
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Figure. eva achieves concrete performance gain especially on hard benchmarks,
without relying on any additional human prompts.
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Results: Remarkable Gains on Hard Benchmarks*!

Model Family (—) GEMMA-2-9B-IT

Benchmark (—) Arena-Hard MT-Bench AlpacaEval 2.0
Method (|) / Metric (—) WR (%) avg. score 1% turn 2" turn LC-WR (%) WR (%)
0y: SFT 41.3 8.57 8.81 8.32 47.11 38.39
6y_.1: DPO 51.6 8.66 9.01 8.32 55.01 51.68
0, .;: +eva 60.1 55 8.90 9.04 8.75 043 55.35 55.53
61_,2: +new human prompts 59.8 8.64 8.88 8.39 55.74 56.15
6_,1: SPPO 55.7 8.62 9.03 8.21 51.58 42.17
0,,;: +eva 58.9 32 8.78 9.11 8.45 (024 51.86 43.04
01,5: +new human prompts N7/l 8.64 8.90 8.39 D74 42.98
6Gp_1: SimPO 52.3 8.69 9.03 8.35 54.29 52.05
0, ,;: +eva 60.7 5.4 8.92 9.08 8.77 (042 55.85 55.92
01_,5: +new human prompts 54.6 8.76 9.00 8.52 54.40 SN2,
6p_,1: ORPO 54.8 8.67 9.04 8.30 52.17 49.50
0,,;: +eva 60.3 55 8.89 9.07 8.71 o4y 54.39 50.88
0:_,2: +new human prompts ST2 8.74 9.01 8.47 54.00 51.21

Table 1: Main results. Our eva achieves notable alignment gains and can surpass human prompts
on major benchmarks across a variety of representative direct preference optimization algorithms.

* All experiments are conducted with external open-source frameworks and models on HuggingFace.
We use 10K prompts from UltraFeedback for training, and use ArmoRM-8B as the default reward model.


https://huggingface.co/datasets/openbmb/UltraFeedback
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1

Additional Results — eva creates meaningtul curriculum.
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Prompt Set (|) / Metric (—) Complexity (1-5) Quality (1-5)

UltraFeedback (seed) 2.90 3.18
UltraFeedback-eva-Iter-1 3.84 3.59
UltraFeedback-eva-Iter-2 3.92 3.63
UltraFeedback-eva-Iter-3 3.98 3.73
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Ablation #1 - eva’s minimax design outperforms alternatives.

Metric info(x) Related Interpretations
A%.: worst-case optimal advantage | miny, (X, y) — maxy r(x,y’)| minimax regret (savage, 1951)
A}, average optimal advantage | % >, T(x,y) — maxy r(x,y’)| Bayesian regret (sanos, 1965)
A% dueling optimal advantage | maxy 4y« 7(X,y) — maxy 7(x,y’)| dueling regret (wu aaLiv, 2016)

Table 2: The reward-advantage-based metrics that serve as the informativeness proxies for prompts.

Model Family (—) GEMMA-2-9B-IT

Benchmark (—) Arena-Hard MT-Bench AlpacaEval 2.0
Method ({) / Metric (—) WR (%) avg. score 1% turn 2" turn LC-WR (%) WR (%)
6y_.1: DPO 51.6 8.66 9.01 8.32 55.01 51.68
0, ;: +eva (uniform) 57.5 8.71 9.02 8.40 53.43 53.98
0, .;: +eva (var(r)) 54.8 8.66 9.13 8.20 54.58 52.55
0,_.;: +eva (avg(r)) 58.5 8.76 9.13 8.40 55.01 55.47
0, .;: +eva (1/avy(r)) 56.7 8.79 9.13 8.45 55.04 54.97
0, ,;: +eva (1/A%) 52.3 8.64 8.96 8.31 53.84 52.92
0, i +eva (A},) ou i 60.0 8.85 9.08 8.61 56.01 56.46
0, ,;: +eva (A} ourvariany 60.0 8.86 9.18 8.52 55.96 56.09
0, 1: +eva (Ag;) ourdefau) 60.1 (55 8.90 9.04 8.75 043 5935 55.53

Table 3: Choice of informativeness metric. Our informativeness metric by advantage achieves the
best performances, comparing with others as the weight to sample prompts to evolve by the creator.
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Ablation #2 - eva’s design of evolving is meaningful.

Benchmark (—) Arena-Hard MT-Bench AlpacaEval 2.0
Method () / Metric (—) WR (%) avg. score 1%turn 2"%turn LC-WR (%) WR (%)
6o_,1: DPO 51.6 8.66 9.01 8.32 55.01 51.68
0,_,;: [no evolve]-greedy 56.1 8.68 8.98 8.38 54.11 53.66
0,1 [no evolve]-sample 55.3 8.69 9.00 8.38 54.22 54.16
0, .;: +eva-greedy (ourvaria 59.5 8.72 9.06 8.36 54.52 D022
0, ;: +eva-sample cuarn 601 890 904 875 5535 5553

Table 4: Effect of evolving. The blue are those training w/ only the informative subset and w/o
evolving); we denote —sample for the default weighted sampling procedure in Algo 1, while using
—-greedy for the variant from the classical active data selection procedure (cf., a recent work (Muldrew
et al., 2024) and a pre-LLM work (Kawaguchi and Lu, 2020)), which selects data by a high-to-low
ranking via the metric greedily. We show evolving brings a remarkable alignment gain (the red v.s.
the blue); and as we evolve, sampling is more robust than being greedy (cf., Russo et al. (2018)).



Ablation #3 — eva scales with better reward models.
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Figure. eva scales with better reward models.
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Ablation #4 — eva is robust in continual training.

- DEQ Model Family (—) GEMMA-2-9B-IT
g 60 Benchmark (—) Arena-Hard
- Method () / Metric () WR (%) avg. len
Z 55 6o: SFT 413 544
| g 6o_,1: DPO (10k) 51.6 651
Bl i e 61_,2: DPO (10Kk) 59.8 718
S I s 65_,3: DPO (10Kk) 612 802
Iter 1 Iter 2 Iter 3 0, .;: +eva(l0k) 60.1 733
. SPPO 0; .5: +eva(l0k) 62.0 787
:\i 60{ —— same prompts 23 +eva (10k) 62.2 774
% new human prompts
= evaprompts Model Family (—) GEMMA-2-9B-IT
58
i Benchmark (—) Arena-Hard
T & Method (]) / Metric (—) WR (%) avg. len
& | g 6y: SFT 413 544
<
Iter 1 Tter 2 Tter 3 60_,1: DPO (20k) 53.2 625
. . . . 6:1_,2: DPO (20k) 47.0 601
Figure 5: Continual training. ¢, ;: bro 20k 46.8 564
: g 0, .;: +eva(20k) 59.5 826
eva stays robust w/ more itera 8l L eva Q0 b S

tions in incremental training. 6; 5 +eva (20k) 61.4 791




Takeaways

eva is a new, simple framework for aligning language models via a creator-solver game.

RLHF can be made open ended:
e self-evolving joint data distributions (with synthesized prompts) bring significant gains.

e reward advantage acts as an effective metric for prompt selection.



Self-Play to Reason:
+ Search is All You Need

“Better than state-of-the-art and 3x faster for neural theorem proving.”

TTTTTTTTTTTTTTT


https://openreview.net/pdf?id=H5hePMXKht

TL; DR

We unify decomposing and search for better and faster reasoning.

Planner: high-level reasoning (search width = 2)

Actor: low-level reasoning (search width = 2)

6 Sods b (i

/ /0] * :candidate/queued/chosen/pruned target goal ® : action (i.e., tactic or proofstep) [~/ :Lean invalidated /validated / validated, and prioritized by value
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Preliminaries

theorem (p g: Prop): p v g g Vv p := by ~= gpal 8p: (p g: Prop) p~v¥ g g V P
intre: h —— goal 81: (p g: Prop)(h: pwvq) gV p
cases h with — goal 82¢ (p q: Prop) (hp: P) G VvV P

inl hp => apply Or.inr; exact hp —-= goal 83: (p g: Prop) (hg: ) g Vv p
inr hg => apply Or.inl; exact hg —— goal 84: None

Neural theorem proving. A neural network parameterized by 6 can act as a policy that samples
single tactic y;1+1 ~ mg(- | s¢) at step t. The objective is to find the optimal trajectory which leads to
solved for each statement q, that is to find a sequence of tactics y7i, . .., y7 such that:

Y1 y2 Y3 yT
So > S1 > So > sws —F ST

Classical training method.

> Input: {S$current_goal s}
> Output: {S$proofstep y*}
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Intuition for Flat Search v.s. Hierarchical Search

c/q CA 10
X
4 08
(o000 000000000o0 o0 [ )
L 3
(0000000 0foo0o0o0o0o0o0 o ( | )
L 2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. Hierarchical decomposition for the flat action Figure 2. Partitioning over the ~ Figure 3. Focused exploration
space; the yellow nodes are further explored [Reference].  action space [Reference]. in subspaces [Reference].
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Method: (Offline SFT Stage) Goal-Driven Co-TIraining

1
Leo(0) = N Z [ logpe(s*|s) + logpe(y”|s,s”)
(s,y",8%)~D"" goal I;Iranner goal—dﬁ:/ren actor

- -’

triplet set

Let’s think in an information-theoretic way: s;4; acts as an information bottleneck [Shwartz-Ziv
and Tishby, 2017], by abstracting different possible proofsteps or sequences of proofsteps y; into a
single, more compact representation. Consider a simplified example below:

-—goal 8 = 3 x (2 + 1) =9
-— goal 841 = 9 =09

There exist multiple different proofsteps to reach s, ; from s;, for instance:
* ring — algebraic normalization.
e norm num — direct numeric evaluation.
* simp; rfl —simplification followed by reflexivity.
e calc --- (omitted) — step-by-step calculation.
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Method: (Online Search Stage) Goal-Driven Hierarchical Search

Algorithm 1 RiR - A Unified Reasoning Mechanism with Decomposing and Search
Input: problem statement g, a language model w/ parameter 0

tree < Tree(0,q)
repeat
8] « tree.policy()
tree < Tree(0, s])
repeat
Yi, ¢ tree.policy()
until STOP_LOW
tree, tree}.update()
until STOP_HIGH
: return tree.solution

QEegASth i

—

* (Classical) Flat planning: we have a policy 7¢ : S — A that maps states to actions.
* (RiR) Hierarchical planning: we have:
— A high-level planner policy 7}, : & — S, that maps goals to target goals.

— A low-level actor policy 7 : & x S — A, that maps goals and target goals to actions.



Results: Robust Performance Gains

Search Method (—) Best-First Search
Dataset (—) miniF2F-test> LeanDojo-test
Method () / Model (—) BYT5-0.3B BYT5-0.3B
Reprover 34.43% 50.16%
RiR 36.89% 53.73%

Table 1: Performance with BFS. Pass@ ] rate on LeanDojo and miniF2F.

Search Method (—) Monte-Carlo Tree Search
Dataset (—) miniF2F-test LeanDojo-test
Method (|) / Model (—) BYT5-0.3B BYT5-0.3B

Reprover 36.51% 50.24%

RiR 37.83% 53.92%

Table 2: Performance with MCTS. Pass@ I rate on LeanDojo and miniF2F.
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Results: Remarkable Efficiency Gains

Reprover RiR
avg. actor time: 78.21s @  avg. actor time: 23.39s
(no planner) avg. planner time: 3.93s
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Figure 2: Efficiency. The scatter plot for actor
and planner time spent for proved theorems on
miniF2F. RiR significantly reduces the actor
time via the goal guidance from the planner.
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Figure 3: Efficiency. The CDF plot for search
time spent for proved theorems on miniF2F Bench-
mark. RiR is significantly faster (nearly 3x) than
the existing state-of-the-art baseline.
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Example Proofs

Example 3: Proof Found by RiR

Theorem:
File Path: Mathlib/Order/SuccPred/Basic.lean
Full Name: exists_succ_iterate_or

Status: Status.PROVED

Proof:
obtain h [[| h := le_total a b
exacts [Or.inl (IsSuccArchimedean.exists_succ_iterate_of_le h),
Or.inr (IsSuccArchimedean.exists_succ_iterate_of_le h)]

Search Statistics:
Planner Time: 15.921687303110957
Actor Time: 44.464585242792964
Environment Time: 8.429574175737798
Total Time: 68.86368872597814
Total Nodes: 377
Searched Nodes: 3

Example 3: Failure by Reprover (w/o retrieval)

Theorem:
File Path: Mathlib/Order/SuccPred/Basic.lean
Full Name: exists_succ_iterate_or

Status: Status.OPEN
Proof: None

Search Statistics:
Actor Time: 519.0408471203409
Environment Time: 86.30267171841115
Total Time: 605.4483464460354
Total Nodes: 2819
Searched Nodes: 95
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Takeaways

RiR is a hierarchical framework for complex reasoning, unifying decomposing and search, and

is significantly faster than classical stepwise reasoning, with robust performance gains.

The performance and efficiency gains come from:
e Offline co-training for SFT.
® Online bi-level search.

p.s., There are many different ways for decomposing!
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e Methodology: latent hierarchical learning
e Applications: CodeLLMs & Neural Theorem Proving
® Theories: Information Theory & Self-Supervised Learning
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