Google DeepMind

Ziyu Ye, Rishabh Agarwal, Tianqi Liu, Rishabh Joshi, Sarmishta Velury, Quoc V. Le, Qijun Tan, Yuan Liu.

Evolving Alignment via Asymmetric Self-Play Scalable Preference Fine-Tuning Beyond Static Human Prompts

 $\max_{\boldsymbol{\phi},\boldsymbol{\theta}} \mathbb{E}_{\mathbf{x} \sim \pi_{\boldsymbol{\phi}}(\cdot)} \left[\mathbb{E}_{\mathbf{y} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \mathbf{x})} \left[r(\mathbf{x},\mathbf{y}) \right] - \beta_1 \cdot \mathbb{D}_{\mathrm{KL}} \left[\pi_{\boldsymbol{\theta}}(\mathbf{y} \mid \mathbf{x}) \parallel \pi_{\mathrm{SFT}}(\mathbf{y} \mid \mathbf{x}) \right] \right] -$

solver \sim "regret minimization"

 $\beta_2 \cdot \mathbb{D}_{\mathrm{KL}} \left[\pi_{\phi}(\mathbf{x}) \parallel p_{\mathrm{ref}}(\mathbf{x}) \right]$ creator ~ "regret maximization" (implicit)

Motivation

Existing RLHF methods mostly rely on fixed prompt sets, which can hurt model generalization & training efficiency.

A New Principle

We design an open-ended RLHF principle for LLMs to self-improve by strategically

From Open-Ended RL to Minimax Games

Two-Player Game with Solver Regret as the Objective: $\operatorname{Regret}(\pi_{\phi}, \pi_{\theta}) = \mathbb{E}_{\mathbf{x} \sim \pi_{\phi}(\cdot)} \Big[\mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\mathbf{y}|\mathbf{x})} \big[r(\mathbf{x}, \mathbf{y}) \big] - \mathbb{E}_{\mathbf{y} \sim \pi_{\mathrm{KL}}^{\star}(\mathbf{y}|\mathbf{x})} \big[r(\mathbf{x}, \mathbf{y}) \big] \Big]$

The Minimax Strategy at Nash Equilibrium:

$$\pi_{\mathcal{Y}|\mathcal{X}}^{\star} \in \operatorname*{arg\,min}_{\pi_{\mathcal{Y}|\mathcal{X}}} \max_{\pi_{\mathcal{X}}} \mathbb{E}_{\mathbf{x} \sim \pi_{\mathcal{X}}} \left[\operatorname{Regret}(\mathbf{x}, \pi_{\mathcal{Y}|\mathcal{X}}) \right]$$

Regret Minimization by the **Solver**:

co-evolving prompts & responses.

A New Training Mechanism

Solver: propose preferred responses **Creator**: propose more informative prompts

The Empirical Results

eva brings "universal" alignment gains.

Any preference optimization loss, e.g., DPO:

$$\ell_{\beta}(\pi_{\boldsymbol{\theta}}) = -\log \left[\sigma \Big(\beta \cdot \Delta_{\pi_{\boldsymbol{\theta}};\pi_{\mathrm{ref}}}^{\mathbf{x}} \Big) \right] := -\log \left[\sigma \left(\beta \cdot \log \frac{\pi_{\boldsymbol{\theta}}(\mathbf{y}_{+}|\mathbf{x})}{\pi_{\mathrm{ref}}(\mathbf{y}_{+}|\mathbf{x})} - \beta \cdot \log \frac{\pi_{\boldsymbol{\theta}}(\mathbf{y}_{-}|\mathbf{x})}{\pi_{\mathrm{ref}}(\mathbf{y}_{-}|\mathbf{x})} \right) \right]$$

Regret Maximization by the **Creator**:

The Practical Algorithm

eva can be easily plugged into any RLHF pipeline.

Algorithm 1 eva: Evolving Alignment <i>via</i> Asymmetric Self-Play							
	Input: initial policy π_{θ_0} , initial	prompt set \mathcal{X}_0					
1:	for iteration $t = 1, 2, \dots$ do						
	\triangledown /* creator step */						
2:	estimate informativeness:	$\mathcal{X}_{t-1} \leftarrow \{(\mathbf{x}_i, \mathtt{info}(\mathbf{x}_i)) \mid \mathbf{x}_i \in \mathcal{X}_{t-1}\}$					
	sample subset:	$\mathcal{X}_{t-1}^{\text{info}} \leftarrow \text{sample}(\mathcal{X}_{t-1})$					

$\boldsymbol{\theta}_0$: SF	Г	41.3	8.57	8.81	8.32	47.11	38.39
$\theta_{0 \rightarrow 1}$: DPO		51.6	8.66	9.01	8.32	55.01	51.68
$\boldsymbol{ heta}_{1 ightarrow ilde{1}}$:	+ eva	60.1 (+8.5)	8.90	9.04	8.75 (+0.43)	55.35	55.53
$oldsymbol{ heta}_{1 ightarrow 2}$:	+new human prompts	59.8	8.64	8.88	8.39	55.74	56.15
$\overline{\boldsymbol{\theta}_{0 \to 1}}$: SPPO		55.7	8.62	9.03	8.21	51.58	42.17
$\boldsymbol{\theta}_{1 \rightarrow \tilde{1}}$:	+ eva	58.9 (+3.2)	8.78	9.11	8.45 (+0.24)	51.86	43.04
$\boldsymbol{ heta}_{1 ightarrow 2}$:	+new human prompts	57.7	8.64	8.90	8.39	51.78	42.98
$\theta_{0 \rightarrow 1}$: SimPO		52.3	8.69	9.03	8.35	54.29	52.05
$\boldsymbol{\theta}_{1 \rightarrow \tilde{1}}$:	+eva	60.7 (+8.4)	8.92	9.08	8.77 (+0.42)	55.85	55.92
$\boldsymbol{ heta}_{1 ightarrow 2}$:	+new human prompts	54.6	8.76	9.00	8.52	54.40	55.72
$\theta_{0 \rightarrow 1}$: ORPO		54.8	8.67	9.04	8.30	52.17	49.50
$\boldsymbol{\theta}_{1 \rightarrow \tilde{1}}$:	+ eva	60.3 (+5.5)	8.89	9.07	8.71 (+0.41)	54.39	50.88
$\boldsymbol{\theta}_{1 \rightarrow 2}$:	+new human prompts	57.2	8.74	9.01	8.47	54.00	51.21

eva's advantage-based proxy is effective.

\bigtriangledown /* solver step */

3: *self-generate responses*:

self-evolve prompts:

annotate rewards:

- preference optimization:
- $\forall \boldsymbol{x}_{i} \in \mathcal{X}_{t}, \text{generate } \{\boldsymbol{y}_{i}^{(j)}\} \sim \pi_{\boldsymbol{\theta}_{t-1}}(\cdot \mid \boldsymbol{x}_{i}) \\ \mathcal{X}_{t}' \leftarrow \mathcal{X}_{t} \cup \{(\boldsymbol{y}_{i}^{(j)}, r_{i}^{(j)})\} \\ \boldsymbol{\theta}_{t} \leftarrow \boldsymbol{\theta}_{t-1} \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{X}_{t}'}(\boldsymbol{\theta})$

4: end for

5: return final solver policy π_{θ_T}

eva leads to continual self-improving – the infinite games!

Model Family (\rightarrow) Benchmark (\rightarrow) Method (\downarrow) / Metric (\rightarrow)		GEMMA-2-9B-IT						
		Arena-Hard MT-Bench				AlpacaEval 2.0		
		WR (%)	avg. score	1 st turn	2 nd turn	LC-WR (%)	WR (%)	
$\theta_{0 \rightarrow 1}$: DPO		51.6	8.66	9.01	8.32	55.01	51.68	
$oldsymbol{ heta}_{1 ightarrow ilde{1}}$:	+ eva (uniform)	57.5	8.71	9.02	8.40	53.43	53.98	
$\boldsymbol{\theta}_{1 \rightarrow \tilde{1}}$:	+ eva (var (r))	54.8	8.66	9.13	8.20	54.58	52.55	
$\boldsymbol{\theta}_{1 \rightarrow \tilde{1}}$:	+ eva $(avg(r))$	58.5	8.76	9.13	8.40	55.01	55.47	
$\boldsymbol{\theta}_{1 \rightarrow \tilde{1}}^{1 \rightarrow 1}$:	+eva $(1/avg(r))$	56.7	8.79	9.13	8.45	55.04	54.97	
$oldsymbol{ heta}_{1 ightarrow ilde{1}}$:	+ eva $(1/A_{\min}^{\star})$	52.3	8.64	8.96	8.31	53.84	52.92	
$oldsymbol{ heta}_{1 ightarrow ilde{1}}$:	+ eva (A^{\star}_{avg}) (our variant)	60.0	8.85	9.08	8.61	56.01	56.46	
$oldsymbol{ heta}_{1 ightarrow ilde{1}}$:	+ eva (A^{\star}_{dts}) (our variant)	60.0	8.86	9.18	8.52	55.96	56.09	
$oldsymbol{ heta}_{1 ightarrow ilde{1}}$:	+ eva (A^{\star}_{\min}) (our default)	60.1 (+8.5)	8.90	9.04	8.75 (+0.43)	55.35	55.53	

eva's evolving step is effective.

Benchmark (\rightarrow)Method (\downarrow) / Metric (\rightarrow) $\theta_{0 \rightarrow 1}$: DPO		Arena-Hard	MT-Bench			AlpacaEval 2.0	
		WR (%)	avg. score	1 st turn	2 nd turn	LC-WR (%)	WR (%)
		51.6	8.66	9.01	8.32	55.01	51.68
$egin{aligned} m{ heta}_{1 ightarrow ilde{1}}:\ m{ heta}_{1 ightarrow ilde{1}}: \end{aligned}$	[no evolve]-greedy [no evolve]-sample	56.1 55.3	8.68 8.69	8.98 9.00	8.38 8.38	54.11 54.22	53.66 54.16
$oldsymbol{ heta}_{1 ightarrow ilde{1}}$:	+ eva-greedy (our variant)	59.5	8.72	9.06	8.36	54.52	55.22
$\theta_{1 \rightarrow \tilde{1}}$:	+ eva-sample (our default)	60.1	8.90	9.04	8.75	55.35	55.53

 $\mathcal{X}_t \leftarrow \texttt{evolve}(\mathcal{X}_{t-1}^{\texttt{into}})$

General Takeaways

- 1. RLHF can be made open-ended.
- 2. Reward advantage is effective in prompt selection.

