Understanding the Effect of Bias in Deep Anomaly Detection

Ziyu Ye, Yuxin Chen, Haitao Zheng

AD is critical in many real-world applications.

e.g., intrusion detection, fraud detection, adversarial attacks, medical diagnosis, time series analysis, system monitoring, ...

AD is critical in many real-world applications.

e.g., intrusion detection, fraud detection, adversarial attacks, medical diagnosis, time series analysis, system monitoring, ...

AD is critical in many real-world applications.

e.g., intrusion detection, fraud detection, adversarial attacks, medical diagnosis, time series analysis, system monitoring, ...

Basic assumption: limited knowledge for anomalies.

• *Few* samples of anomalies in training;

AD is critical in many real-world applications.

e.g., intrusion detection, fraud detection, adversarial attacks, medical diagnosis, time series analysis, system monitoring, ...

- *Few* samples of anomalies in training;
- *Unexpectable* target distribution of anomalies.

(An illustrative example of Pokémon.)

AD is critical in many real-world applications.

e.g., intrusion detection, fraud detection, adversarial attacks, medical diagnosis, time series analysis, system monitoring, ...

Abnormal

Known types in source distribution

Unknown types in target distribution

- *Few* samples of anomalies in training;
- *Unexpectable* target distribution of anomalies.

(An illustrative example of Pokémon.)

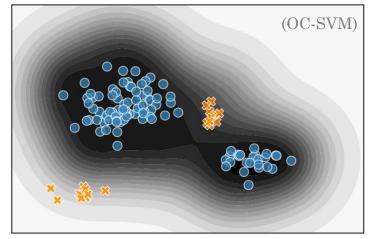
A

AD is critical in many real-world applications.

e.g., intrusion detection, fraud detection, adversarial attacks, medical diagnosis, time series analysis, system monitoring, ...

Abnormal

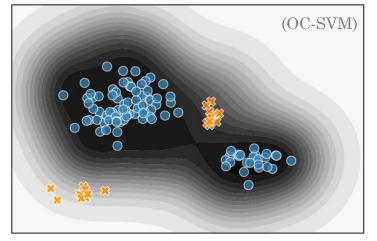
Known types in source distribution


Unknown types in target distribution

- *Few* samples of anomalies in training;
- *Unexpectable* target distribution of anomalies.
- \rightarrow Challenging to get a *representative anomaly set*.

Low High Normal Data Anomaly Score X Abnormal Data

Semi-Supervised (AD)


[AC15], [ZP17], [Ruf+18], [Zon+18], [Goy+20], ...

Low High Normal Data Anomaly Score Abnormal Data

Semi-Supervised (AD)

[AC15], [ZP17], [Ruf+18], [Zon+18], [Goy+20], ...

Pro A <u>compact enclosing</u> of the normal.

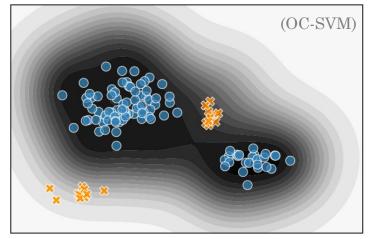

1. Introduction

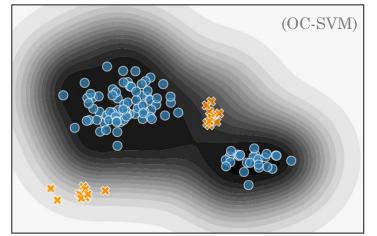
Image Source: Ruff, Lukas, et al. "Deep semi-supervised anomaly detection." In proc. of ICLR, 2020.

Low High Normal Data Anomaly Score Abnormal Data

Semi-Supervised (AD)

[AC15], [ZP17], [Ruf+18], [Zon+18], [Goy+20], ...

Pro A compact enclosing of the normal.

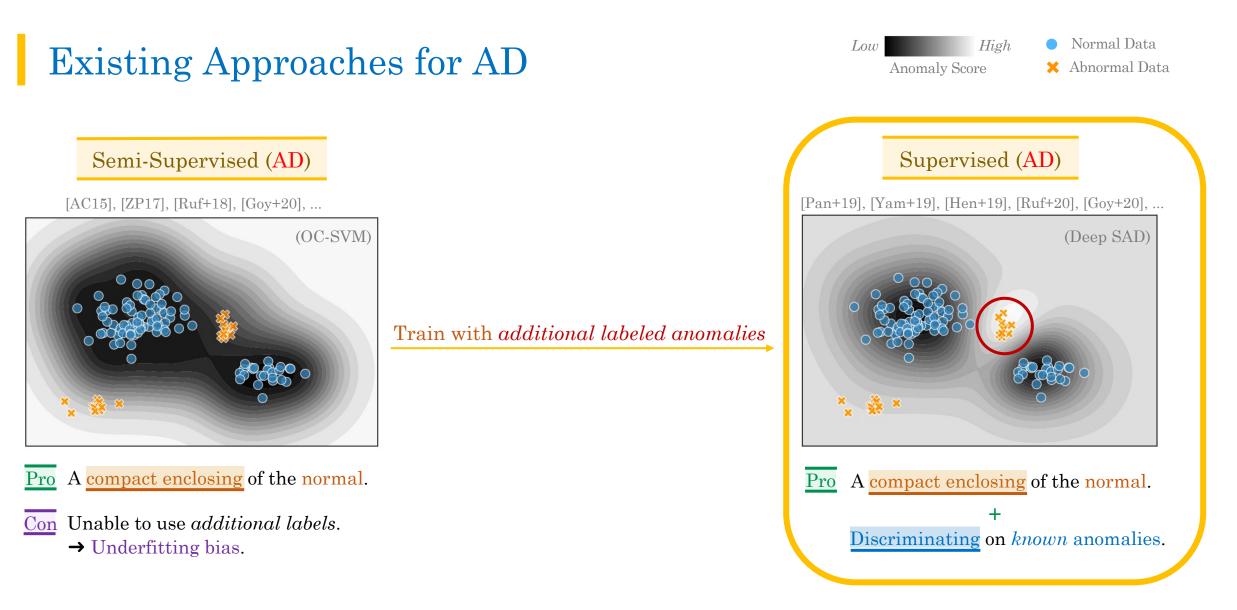


1. Introduction

Low High Normal Data Anomaly Score Abnormal Data

Semi-Supervised (AD)

[AC15], [ZP17], [Ruf+18], [Zon+18], [Goy+20], ...



- **Pro** A compact enclosing of the normal.
- Con Unable to identify *hard anomalies*. → Underfitting bias.

Can we make use of *additional labeled anomalies*?

1. Introduction

Normal Data High Low Existing Approaches for AD Anomaly Score 🗙 Abnormal Data Supervised (AD) Semi-Supervised (AD) [AC15], [ZP17], [Ruf+18], [Goy+20], ... [Pan+19], [Yam+19], [Hen+19], [Ruf+20], [Goy+20], ... (OC-SVM) (Deep SAD) Train with additional labeled anomalies × 💑 × **Pro** A compact enclosing of the normal. **Pro** A compact enclosing of the normal. + Con Unable to use *additional labels*. Discriminating on known anomalies. \rightarrow Underfitting bias.

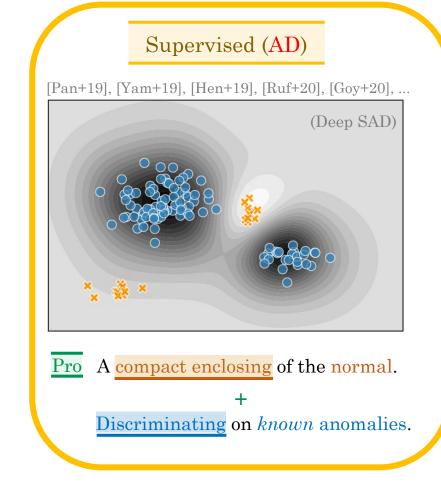
1. Introduction

Motivation

Low High Normal Data Anomaly Score X Abnormal Data

Supervised (AD)

Will additional labels do harm?


 Image: Contract enclosing of the normal.

 +

 Discriminating on known anomalies.

Motivation

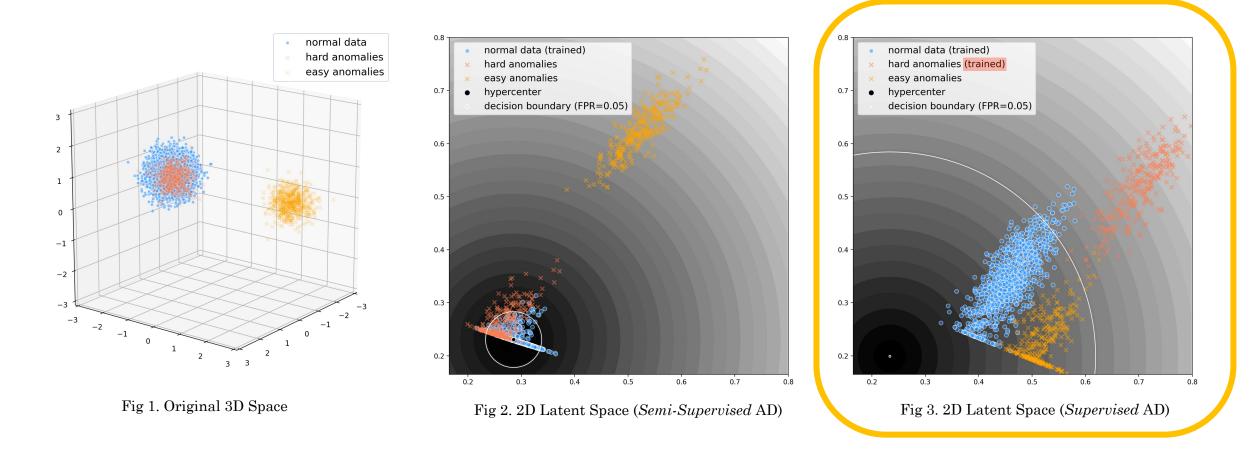
Low High Normal Data Anomaly Score Abnormal Data

Will additional labels do harm?

Can **unseen anomalies** suffer from **bias***?

* Note that such bias is novel compared to the aforementioned in literature (c.f. Section 2 of our paper). Image Source: Ruff, Lukas, et al. "Deep semi-supervised anomaly detection." In *proc. of ICLR*, 2020.

2. Motivation


17

A Counter-Intuitive Example

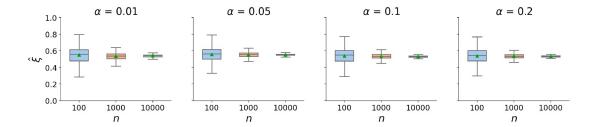
Training with *additional labeled anomalies* can bring *disastrous harmful bias*.

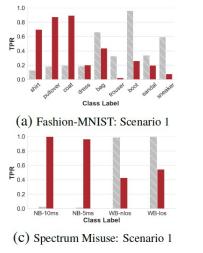
A Counter-Intuitive Example

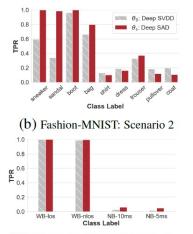
Training with *additional labeled anomalies* can bring *disastrous harmful bias*.

Our Contributions

Define Bias: A formal **ERM Framework**


$$ext{bias}(\hat{s}_{ heta}, \hat{ au}_{ heta}) := rgmax_{(s_{ heta}, au_{ heta}): heta \in \Theta} ext{TPR}(s_{ heta}, au_{ heta}) - ext{TPR}(\hat{s}_{ heta}, \hat{ au}_{ heta})$$


Estimate Bias: The First PAC Analysis



Characterize Bias: Empirical Experiments

$$n \geq rac{8}{\epsilon^2} \cdot \left(\log rac{2}{1-\sqrt{1-\delta}} \cdot \left(rac{2-lpha}{lpha}
ight)^2 + \log rac{2}{\delta} \cdot rac{1}{1-lpha} igg(\left(rac{\ell_a}{\ell_0^-}
ight)^2 + \left(rac{\ell_a'}{\ell_0'}
ight)^2 igg) igg)$$

2. Motivation

[Clarification] Bias in $AD \neq$ Bias in Supervised Learning

[Clarification] Bias in $AD \neq$ Bias in Supervised Learning

Problem formulation is different.

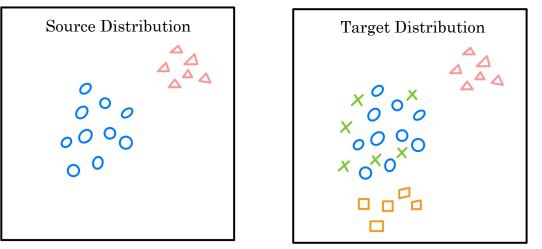
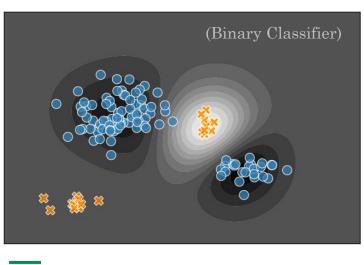
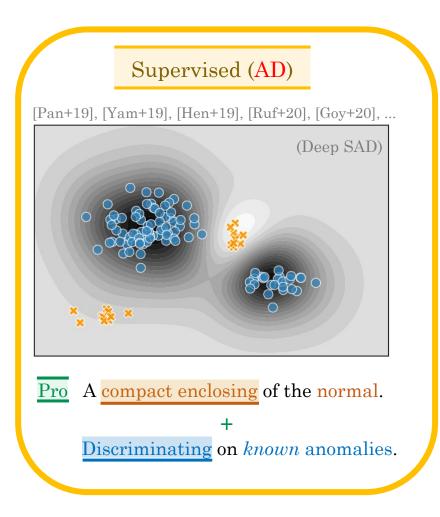


Fig 1. Data distribution of AD problem. The blue represent the normal data, and other different colors represent different *subtypes* of anomalies.

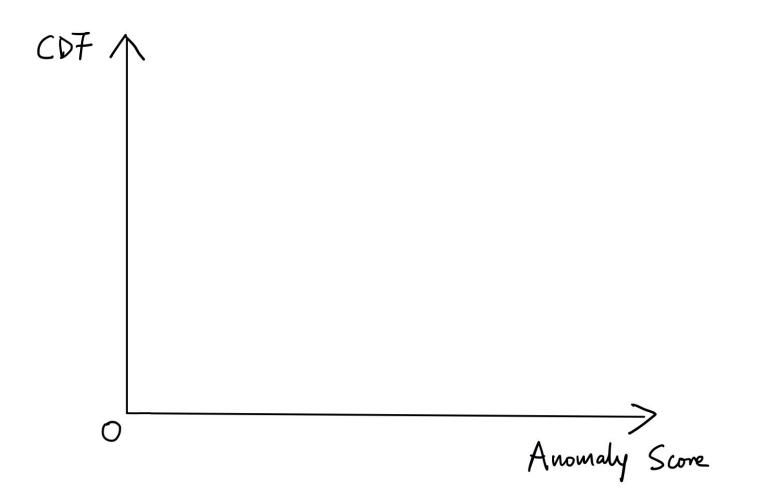
Task Type	Distribution Shift	Known Target Distribution	Known Target Label Set
Imbalanced Classification [Johnson and Khoshgoftaar, 2019]	No	N/A	N/A
Closed Set Domain Adaptation [Saenko et al., 2010]	Yes	Yes	Yes
Open Set Domain Adaptation [Panareda Busto and Gall, 2017]	Yes	Yes	No
Anomaly Detection [Chalapathy and Chawla, 2019]	Yes	No	No

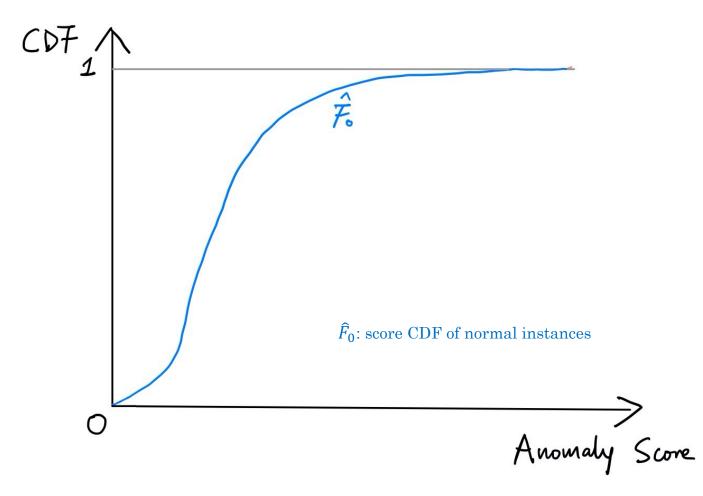

Table 1: Comparison of anomaly detection tasks with other relevant classification tasks.

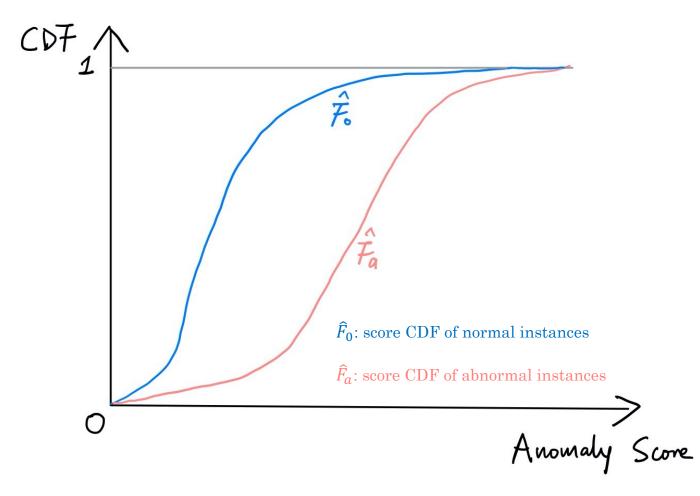
1. Introduction

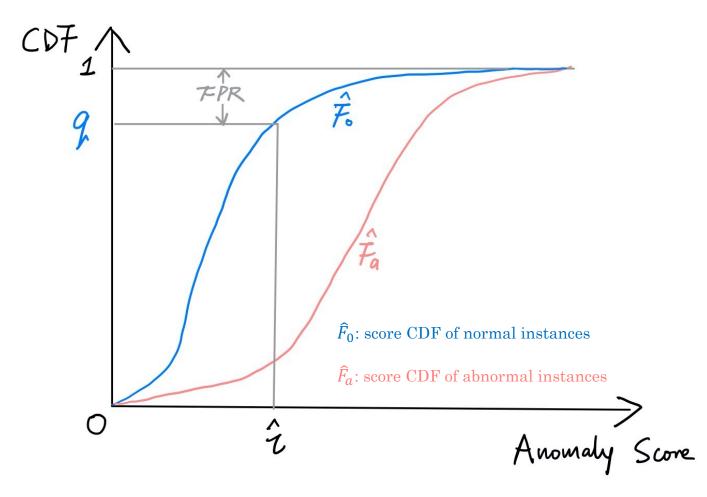

[Clarification] Bias in $AD \neq$ Bias in Supervised Learning

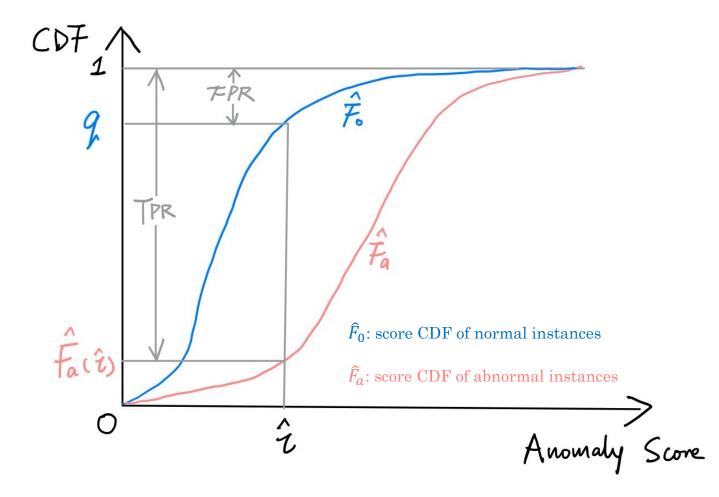
Training mechanism is different.

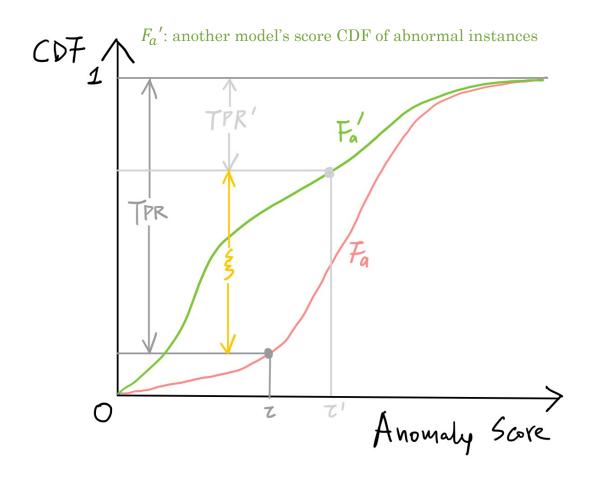

Supervised (Classifier)




- <u>Pro</u> Discriminating on *known* anomalies.
- Con Overfitting to known anomalies.
 - \rightarrow Overfitting bias.



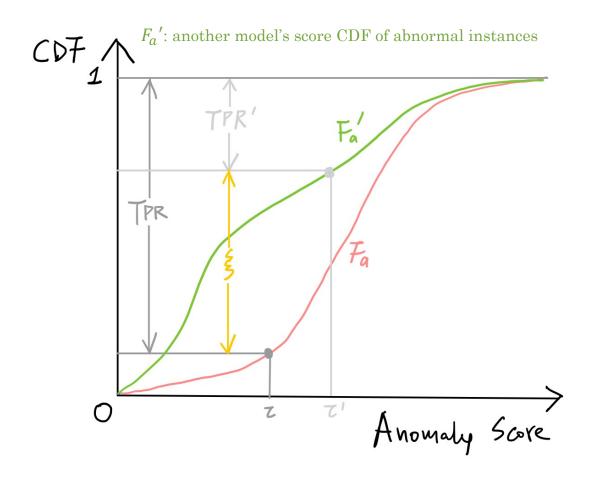



ERM-Style Scoring Bias

 $\operatorname{bias}(\hat{s}_{\theta}, \hat{\tau}_{\theta}) := \underset{(s_{\theta}, \tau_{\theta}): \theta \in \Theta}{\operatorname{arg\,max}} \operatorname{TPR}(s_{\theta}, \tau_{\theta}) - \operatorname{TPR}(\hat{s}_{\theta}, \hat{\tau}_{\theta})$

ERM-Style Scoring Bias

 F_a : one model's score CDF of abnormal instances


$$\operatorname{bias}(\hat{s}_{\theta}, \hat{\tau}_{\theta}) := \underset{(s_{\theta}, \tau_{\theta}): \theta \in \Theta}{\operatorname{arg\,max}} \operatorname{TPR}(s_{\theta}, \tau_{\theta}) - \operatorname{TPR}(\hat{s}_{\theta}, \hat{\tau}_{\theta})$$

Relative Scoring Bias

$$\xi(s, s') := \operatorname{bias}(s, \tau) - \operatorname{bias}(s', \tau')$$
$$= \operatorname{TPR}(s', \tau') - \operatorname{TPR}(s, \tau)$$

ERM-Style Scoring Bias

 F_a : one model's score CDF of abnormal instances

 $\operatorname{bias}(\hat{s}_{\theta}, \hat{\tau}_{\theta}) := \underset{(s_{\theta}, \tau_{\theta}): \theta \in \Theta}{\operatorname{arg\,max}} \operatorname{TPR}(s_{\theta}, \tau_{\theta}) - \operatorname{TPR}(\hat{s}_{\theta}, \hat{\tau}_{\theta})$

```
Relative Scoring Bias
```

$$\xi(s, s') := \operatorname{bias}(s, \tau) - \operatorname{bias}(s', \tau')$$
$$= \operatorname{TPR}(s', \tau') - \operatorname{TPR}(s, \tau)$$

Empirical Relative Scoring Bias

$$\hat{\xi}(s,s') := \widehat{\text{TPR}}(s',\tau') - \widehat{\text{TPR}}(s,\tau)$$

Finite Sample Guarantee

Goal: a theoretical guarantee on model performance in terms of bias.

e.g., how can we almost surely say that additional labeled data helps, or hurts?

Finite Sample Guarantee

Goal: a theoretical guarantee on model performance in terms of bias.

e.g., how can we almost surely say that additional labeled data helps, or hurts?

Proposition 1. Given two scoring functions s, s' and a target FPR q, the relative scoring bias is $\xi(s,s') = F_a(F_0^{-1}(q)) - F'_a(F'_0^{-1}(q)).$

Finite Sample Guarantee

Goal: a theoretical guarantee on model performance in terms of bias.

e.g., how can we almost surely say that additional labeled data helps, or hurts?

Proposition 1. Given two scoring functions s, s' and a target FPR q, the relative scoring bias is $\xi(s,s') = F_a(F_0^{-1}(q)) - F'_a(F'_0^{-1}(q)).$

Theorem 3. Assume that F_a, F'_a, F'_0, F''_0 are Lipschitz continuous with Lipschitz constant $\ell_a, \ell'_a, \ell'_0, \ell''_0$, respectively. Let α be the fraction of abnormal data from the mixture distribution. Then, w.p. at least $1 - \delta$, with

$$n = \mathcal{O}\left(\frac{1}{\alpha^2 \epsilon^2} \log \frac{1}{\delta}\right)$$

the empirical relative scoring bias satisfies $|\hat{\xi} - \xi| \leq \epsilon$.

Convergence of Scoring Bias: *Empirical Results*

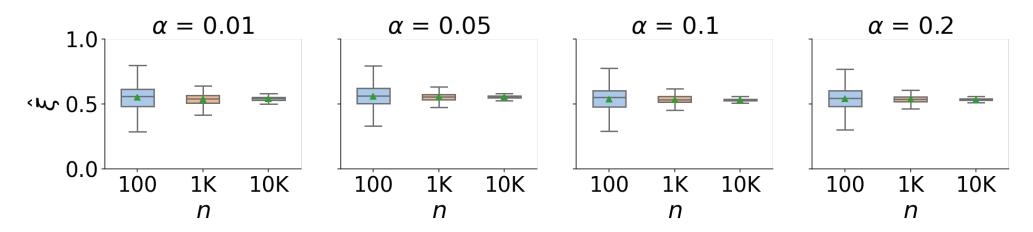
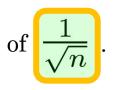



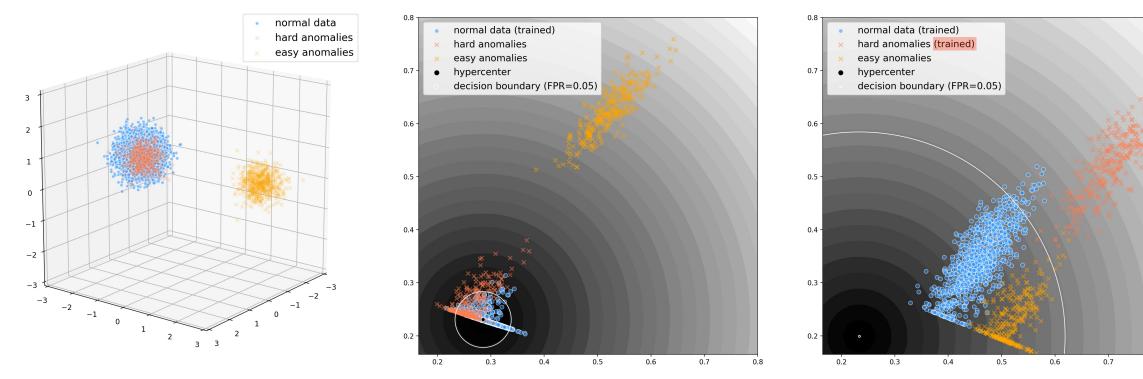
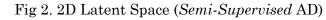
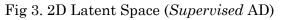
Fig 1. $\hat{\xi}$ is the scoring bias of Deep SVDD relative to Deep SAD.

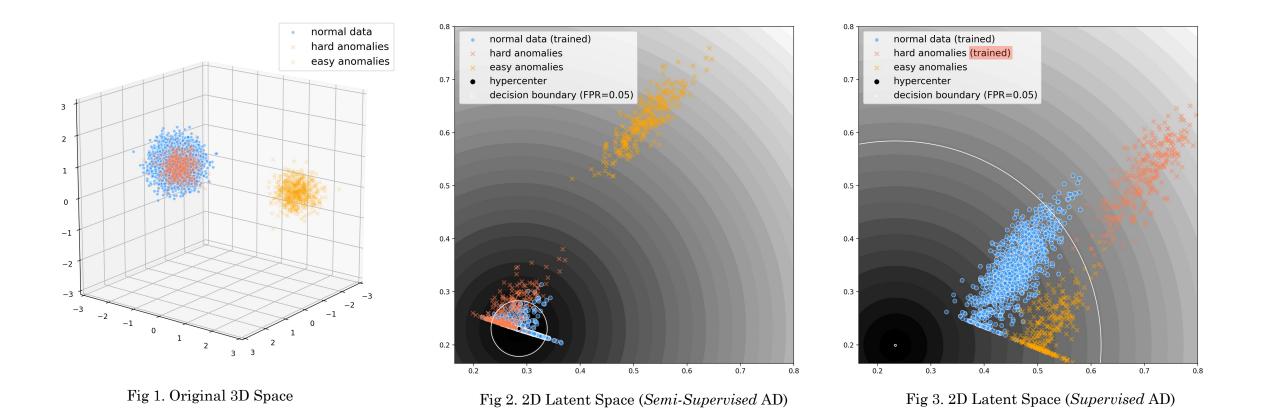
The estimation error ϵ decreases at the rate of

The sample complexity n grows as \mathcal{O}

$$\mathcal{O}\left(rac{1}{lpha^2\epsilon^2}\lograc{1}{\delta}
ight).$$

Recall on Our Observations...

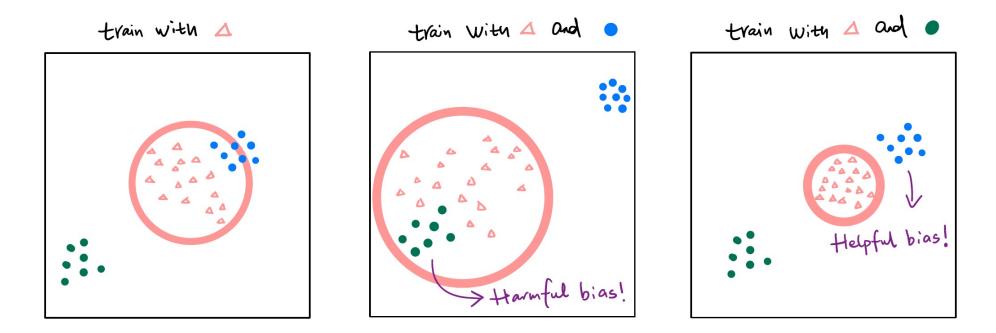

Fig 1. Original 3D Space

0.8

Recall on Our Observations...

Our Hypothesis

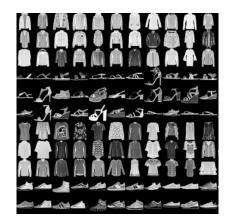
- ▲: normal data
 •: Anormaly type 1 (hard)
 •: anormaly type 2 (easy)


Our Hypothesis

- ∆ : normal data : Anormaly type 1 (hard)
 : anormaly type 2 (easy)

Our Hypothesis

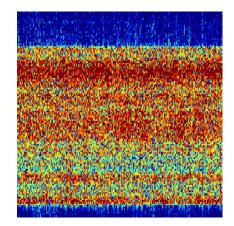
- A : normal data : Anormaly type 1 (hard)
 : anormaly type 2 (easy)

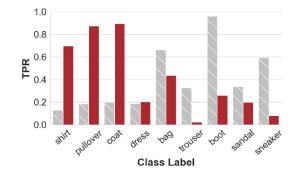


Experiment Setup

Models

Туре	Semi-supervised (trained on normal data)	Supervised (trained on normal & some abnormal data)
Hypersphere-based	Deep SVDD [Ruff et al., 2018]	Deep SAD [Ruff et al., 2020b], Hypersphere Classifier (HSC) [Ruff et al., 2020a]
Reconstruction-based	Autoencoder (AE) [Zhou and Paffenroth, 2017]	Supervised AE (SAE) ⁷ , Autoencoding Binary Classifier (ABC) [Yamanaka et al., 2019]


Datasets


Fashion-MNIST

Landsat Satellite

Spectrum Misuse

training normal = top, training abnormal = shirt

Test data	Deep SVDD	Deep SAD	HSC	AE	SAE	ABC	L^2 to shirt
shirt	0.09 ± 0.01	$0.71 \pm 0.01 \uparrow$	0.70 ± 0.01 \uparrow	0.12 ± 0.01	0.72 ± 0.01 \uparrow	0.72 ± 0.01 \uparrow	0
pullover	0.13 ± 0.02	$0.90 \pm 0.01 \uparrow$	0.89 ± 0.01 \uparrow	0.19 ± 0.02	$0.84 \pm 0.02 \uparrow$	0.85 ± 0.01 \uparrow	0.01
coat	0.14 ± 0.03	$0.92 \pm 0.02 \uparrow$	0.92 ± 0.01 \uparrow	0.15 ± 0.02	$0.92 \pm 0.02 \uparrow$	0.92 ± 0.01	0.01
dress	0.17 ± 0.03	$0.24 \pm 0.03 \uparrow$	$0.24 \pm 0.03 \uparrow$	0.11 ± 0.01	$0.20 \pm 0.03 \uparrow$	$0.21 \pm 0.03 \uparrow$	0.04
bag	0.49 ± 0.07	$0.38 \pm 0.08 \downarrow$	$0.36 \pm 0.07 \downarrow$	0.70 ± 0.03	$0.52 \pm 0.09 \downarrow$	$0.53 \pm 0.07 \downarrow$	0.04
trouser	0.32 ± 0.10	$0.07 \pm 0.04 \downarrow$	$0.06 \pm 0.03 \downarrow$	0.59 ± 0.04	$0.07 \pm 0.04 \downarrow$	$0.16 \pm 0.07 \downarrow$	0.06
boot	0.92 ± 0.03	$0.29 \pm 0.15 \downarrow$	$0.27 \pm 0.16 \downarrow$	0.98 ± 0.02	$0.90 \pm 0.09 \downarrow$	$0.90 \pm 0.08 \downarrow$	0.08
sandal	0.30 ± 0.04	$0.26 \pm 0.08 \downarrow$	$0.26 \pm 0.12 \downarrow$	0.82 ± 0.02	$0.46 \pm 0.10 \downarrow$	$0.56 \pm 0.09 \downarrow$	0.09
sneaker	0.55 ± 0.09	$0.12 \pm 0.10 \downarrow$	$0.14 \pm 0.12 \downarrow$	0.74 ± 0.09	$0.47 \pm 0.19 \downarrow$	$0.46 \pm 0.18 \downarrow$	0.10

Table 3: The model TPR under scenario 1, Fashion-MNIST. The normal class top is similar to the abnormal training class shirt. Their L^2 distance = 0.02.

top

1

coat

bag

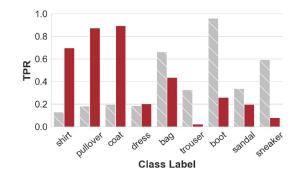
Ν

boot

.

sandal

3


-

trouser

dress

shirt

pullover

training normal = top, training abnormal = shirt

Test data	Deep SVDD	Deep SAD	HSC	AE	SAE	ABC	L^2 to shirt			
shirt	0.09 ± 0.01	$0.71 \pm 0.01 \uparrow$	0.70 ± 0.01 \uparrow	0.12 ± 0.01	0.72 ± 0.01 \uparrow	0.72 ± 0.01 \uparrow	0			
pullover	0.13 ± 0.02	$0.90 \pm 0.01 \uparrow$	$0.89 \pm 0.01 \uparrow$	0.19 ± 0.02	$0.84 \pm 0.02 \uparrow$	0.85 ± 0.01 \uparrow	0.01			
coat	0.14 ± 0.03	$0.92\pm0.02\uparrow$	$0.92 \pm 0.01 \uparrow$	0.15 ± 0.02	$0.92 \pm 0.02 \uparrow$	$0.92 \pm 0.01 \uparrow$	0.01			
dress	0.17 ± 0.03	$0.24 \pm 0.03 \uparrow$	$0.24 \pm 0.03 \uparrow$	0.11 ± 0.01	$0.20 \pm 0.03 \uparrow$	$0.21 \pm 0.03 \uparrow$	0.04			
bag	0.49 ± 0.07	$0.38 \pm 0.08 \downarrow$	$0.36 \pm 0.07 \downarrow$	0.70 ± 0.03	$0.52 \pm 0.09 \downarrow$	$0.53 \pm 0.07 \downarrow$	0.04			
trouser	0.32 ± 0.10	$0.07 \pm 0.04 \downarrow$	$0.06 \pm 0.03 \downarrow$	0.59 ± 0.04	$0.07 \pm 0.04 \downarrow$	$0.16 \pm 0.07 \downarrow$	0.06			
boot	0.92 ± 0.03	$0.29 \pm 0.15 \downarrow$	$0.27 \pm 0.16 \downarrow$	0.98 ± 0.02	$0.90 \pm 0.09 \downarrow$	$0.90 \pm 0.08 \downarrow$	0.08			
sandal	0.30 ± 0.04	$0.26 \pm 0.08 \downarrow$	$0.26 \pm 0.12 \downarrow$	0.82 ± 0.02	$0.46 \pm 0.10 \downarrow$	$0.56 \pm 0.09 \downarrow$	0.09			
sneaker	0.55 ± 0.09	$0.12 \pm 0.10 \downarrow$	$0.14 \pm 0.12 \downarrow$	0.74 ± 0.09	$0.47 \pm 0.19 \downarrow$	$0.46 \pm 0.18 \downarrow$	0.10			

Table 3: The model TPR under scenario 1, Fashion-MNIST. The normal class top is similar to the abnormal training class shirt. Their L^2 distance = 0.02.

top

1

shirt

pullover

coat

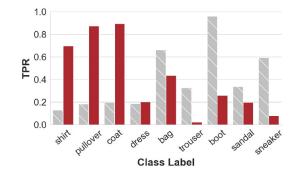
bag

Ν

boot

.

sandal


3

-

trouser

dress

Positive bias!

training normal = top, training abnormal = shirt

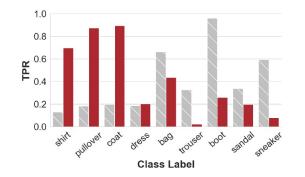
Test data	Deep SVDD	Deep SAD	HSC	AE	SAE	ABC	L^2 to shirt	dress
shirt	0.09 ± 0.01	$0.71 \pm 0.01 \uparrow$	0.70 ± 0.01 \uparrow	0.12 ± 0.01	0.72 ± 0.01 \uparrow	$0.72 \pm 0.01 \uparrow$	0	1
pullover	0.13 ± 0.02	$0.90 \pm 0.01 \uparrow$	$0.89 \pm 0.01 \uparrow$	0.19 ± 0.02	$0.84 \pm 0.02 \uparrow$	$0.85 \pm 0.01 \uparrow$	0.01	bag
coat	0.14 ± 0.03	$0.92 \pm 0.02 \uparrow$	$0.92 \pm 0.01 \uparrow$	0.15 ± 0.02	$0.92 \pm 0.02 \uparrow$	$0.92 \pm 0.01 \uparrow$	0.01	
dress	0.17 ± 0.03	$0.24 \pm 0.03 \uparrow$	$0.24 \pm 0.03 \uparrow$	0.11 ± 0.01	$0.20\pm0.03\uparrow$	$0.21 \pm 0.03 \uparrow$	0.04	trouser
bag	0.49 ± 0.07	$0.38 \pm 0.08 \downarrow$	$0.36 \pm 0.07 \downarrow$	0.70 ± 0.03	$0.52 \pm 0.09 \downarrow$	$0.53 \pm 0.07 \downarrow$	0.04	
trouser	0.32 ± 0.10	$0.07 \pm 0.04 \downarrow$	$0.06 \pm 0.03 \downarrow$	0.59 ± 0.04	$0.07 \pm 0.04 \downarrow$	$0.16 \pm 0.07 \downarrow$	0.06	Ν
boot	0.92 ± 0.03	$0.29 \pm 0.15 \downarrow$	$0.27 \pm 0.16 \downarrow$	0.98 ± 0.02	$0.90 \pm 0.09 \downarrow$	$0.90 \pm 0.08 \downarrow$	0.08	boot
sandal	0.30 ± 0.04	$0.26 \pm 0.08 \downarrow$	$0.26 \pm 0.12 \downarrow$	0.82 ± 0.02	$0.46 \pm 0.10 \downarrow$	$0.56 \pm 0.09 \downarrow$	0.09	
sneaker	0.55 ± 0.09	$0.12 \pm 0.10 \downarrow$	$0.14 \pm 0.12 \downarrow$	0.74 ± 0.09	$0.47 \pm 0.19 \downarrow$	$0.46 \pm 0.18 \downarrow$	0.10	sandal

Table 3: The model TPR under scenario 1, Fashion-MNIST. The normal class top is similar to the abnormal training class shirt Their L^2 distance = 0.02.

Negative bias!

-24

sneaker


top

1

coat

shirt

pullover

training normal = top, training abnormal = shirt

Test data	Deep SVDD	Deep SAD	HSC	AE	SAE	ABC	L^2 to shirt	dress	
shirt	0.09 ± 0.01	$0.71 \pm 0.01 \uparrow$	0.70 ± 0.01 \uparrow	0.12 ± 0.01	0.72 ± 0.01 \uparrow	0.72 ± 0.01 \uparrow	0		
pullover	0.13 ± 0.02	$0.90 \pm 0.01 \uparrow$	$0.89 \pm 0.01 \uparrow$	0.19 ± 0.02	$0.84 \pm 0.02 \uparrow$	0.85 ± 0.01 \uparrow	0.01	bag	
coat	0.14 ± 0.03	$0.92 \pm 0.02 \uparrow$	$0.92 \pm 0.01 \uparrow$	0.15 ± 0.02	$0.92\pm0.02\uparrow$	$0.92 \pm 0.01 \uparrow$	0.01		
dress	0.17 ± 0.03	$0.24 \pm 0.03 \uparrow$	$0.24 \pm 0.03 \uparrow$	0.11 ± 0.01	0.20 ± 0.03	$0.21 \pm 0.03 \uparrow$	0.04	trouser	
bag	0.49 ± 0.07	$0.38 \pm 0.08 \downarrow$	$0.36 \pm 0.07 \downarrow$	0.70 ± 0.03	$0.52 \pm 0.09 \downarrow$	$0.53 \pm 0.07 \downarrow$	0.04		
trouser	0.32 ± 0.10	$0.07 \pm 0.04 \downarrow$	$0.06 \pm 0.03 \downarrow$	0.59 ± 0.04	$0.07 \pm 0.04 \downarrow$	$0.16 \pm 0.07 \downarrow$	0.06	Π	
boot	0.92 ± 0.03	$0.29 \pm 0.15 \downarrow$	$0.27 \pm 0.16 \downarrow$	0.98 ± 0.02	$0.90 \pm 0.09 \downarrow$	$0.90 \pm 0.08 \downarrow$	0.08	boot	
sandal	0.30 ± 0.04	$0.26 \pm 0.08 \downarrow$	$0.26 \pm 0.12 \downarrow$	0.82 ± 0.02	$0.46 \pm 0.10 \downarrow$	$0.56 \pm 0.09 \downarrow$	0.09		
sneaker	0.55 ± 0.09	$0.12 \pm 0.10 \downarrow$	$0.14 \pm 0.12 \downarrow$	0.74 ± 0.09	$0.47 \pm 0.19 \downarrow$	$0.46 \pm 0.18 \downarrow$	0.10	sandal	

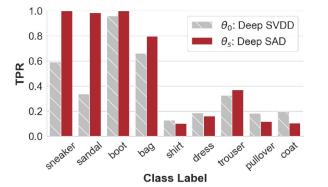
Table 3: The model TPR under scenario 1, Fashion-MNIST. The normal class top is similar to the abnormal training class shirt. Their L^2 distance = 0.02.

Negative bias!

Positive bias!

-24

sneaker


top

1

shirt

pullover

coat

training normal = top, training abnormal = sneaker

Test data	Deep SVDD	Deep SAD	HSC	AE	SAE	ABC	L^2 to sneaker
sneaker	0.55 ± 0.09	$1.00\pm0.00\uparrow$	$1.00\pm0.00\uparrow$	0.74 ± 0.09	$1.00\pm0.00\uparrow$	$1.00\pm0.00\uparrow$	0
sandal	0.30 ± 0.04	$0.99 \pm 0.01 \uparrow$	$0.98\pm0.02\uparrow$	0.82 ± 0.02	$1.00 \pm 0.00 \uparrow$	$1.00 \pm 0.00 \uparrow$	0.02
boot	0.92 ± 0.03	$1.00 \pm 0.00 \uparrow$	$0.97\pm0.02\uparrow$	0.98 ± 0.02	$1.00 \pm 0.00 \uparrow$	$1.00\pm0.00\uparrow$	0.07
bag	0.49 ± 0.07	$0.80\pm0.05\uparrow$	0.81 ± 0.11 \uparrow	0.70 ± 0.03	$0.84 \pm 0.03 \uparrow$	0.82 ± 0.03	0.07
shirt	0.09 ± 0.01	$0.11 \pm 0.02 \uparrow$	0.12 ± 0.01 \uparrow	0.12 ± 0.01	$0.13 \pm 0.01 \uparrow$	0.15 ± 0.01 \uparrow	0.10
trouser	0.32 ± 0.09	0.31 ± 0.10	$0.11 \pm 0.12 \downarrow$	0.58 ± 0.04	0.58 ± 0.03	0.58 ± 0.05	0.12
dress	0.16 ± 0.03	0.16 ± 0.04	$0.11 \pm 0.01 \downarrow$	0.11 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.13
pullover	0.13 ± 0.02	0.13 ± 0.03	0.14 ± 0.05	0.19 ± 0.02	0.21 ± 0.03	0.19 ± 0.02	0.13
coat	0.14 ± 0.03	0.13 ± 0.03	0.13 ± 0.06	0.15 ± 0.02	0.16 ± 0.02	0.15 ± 0.02	0.14

Table 6: The model TPR under scenario 2, Fashion-MNIST. The normal class top is dissimilar to the abnormal training class sneaker, and the L^2 distance between the two is 0.13.

top

1

-

sandal

boot

bag

shirt

trouser

Π

dress

pullover

1

coat

sneaker

		U		\sim				top
			1.0	θ_0 : Deep SV				Ť
^{0.8} ^{0.6} ^{0.4} ^{0.2} ^{0.0} _{neater} sonth bot bas ant tress tropset public cost Class Label ^{0.8} ^{0.6} ^{0.4} ^{0.2} ^{0.0} ^{0.6} ^{0.4} ^{0.2} ^{0.0} ^{0.6} ^{0.6} ^{0.4} ^{0.2} ^{0.0} ^{0.6} ^{0.6} ^{0.4} ^{0.2} ^{0.0} ^{0.6}								sneak sanda boot
		training	g normal = top, tra		= sneaker			
Test data	Deep SVDD	Deep SAD	HSC	AE	SAE	ABC	L^2 to sneaker	bag
sneaker	0.55 ± 0.09	$1.00\pm0.00\uparrow$	$1.00\pm0.00\uparrow$	0.74 ± 0.09	$1.00\pm0.00\uparrow$	$1.00\pm0.00\uparrow$	0	
sandal	0.30 ± 0.04	$0.99 \pm 0.01 \uparrow$	$0.98 \pm 0.02 \uparrow$	0.82 ± 0.02	$1.00 \pm 0.00 \uparrow$	$1.00 \pm 0.00 \uparrow$	0.02	shirt
boot	0.92 ± 0.03	$1.00 \pm 0.00 \uparrow$	$0.97\pm0.02\uparrow$	0.98 ± 0.02	$1.00 \pm 0.00 \uparrow$	$1.00 \pm 0.00 \uparrow$	0.07	
bag	0.49 ± 0.07	$0.80\pm0.05\uparrow$	$0.81 \pm 0.11 \uparrow$	0.70 ± 0.03	$0.84 \pm 0.03 \uparrow$	$0.82\pm0.03\uparrow$	0.07	trouse
shirt	0.09 ± 0.01	$0.11 \pm 0.02 \uparrow$	0.12 ± 0.01 \uparrow	0.12 ± 0.01	$0.13 \pm 0.01 \uparrow$	$0.15\pm0.01\uparrow$	0.10	
trouser	0.32 ± 0.09	0.31 ± 0.10	$0.11 \pm 0.12 \downarrow$	0.58 ± 0.04	0.58 ± 0.03	0.58 ± 0.05	0.12	n
dress	0.16 ± 0.03	0.16 ± 0.04	$0.11 \pm 0.01 \downarrow$	0.11 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.13	dress
pullover	0.13 ± 0.02	0.13 ± 0.03	0.14 ± 0.05	0.19 ± 0.02	0.21 ± 0.03	0.19 ± 0.02	0.13	
coat	0.14 ± 0.03	0.13 ± 0.03	0.13 ± 0.06	0.15 ± 0.02	0.16 ± 0.02	0.15 ± 0.02	0.14	pullov

Table 6: The model TPR under scenario 2, Fashion-MNIST. The normal class top is dissimilar to the abnormal training class sneaker, and the L^2 distance between the two is 0.13.

coat

Scenario 3: Mixed Training

Test data	Deep SVDD	Deep SAD	HSC	AE	SAE	ABC	L^2 to shirt	L^2 to sneaker
shirt	0.09 ± 0.01	$0.69 \pm 0.01 \uparrow$	$0.69 \pm 0.02 \uparrow$	0.12 ± 0.01	$0.67 \pm 0.01 \uparrow$	0.66 ± 0.01	0	0.10
sneaker	0.55 ± 0.09	$1.00 \pm 0.00 \uparrow$	$1.00 \pm 0.00 \uparrow$	0.74 ± 0.09	$1.00 \pm 0.00 \uparrow$	$1.00 \pm 0.00 \uparrow$	0.10	0
pullover	0.13 ± 0.02	$0.90 \pm 0.01 \uparrow$	$0.90 \pm 0.01 \uparrow$	0.19 ± 0.02	$0.82 \pm 0.02 \uparrow$	$0.83 \pm 0.02 \uparrow$	0.01	0.13
coat	0.14 ± 0.03	$0.91 \pm 0.02 \uparrow$	$0.90 \pm 0.01 \uparrow$	0.15 ± 0.02	$0.86 \pm 0.02 \uparrow$	$0.87 \pm 0.02 \uparrow$	0.01	0.14
dress	0.17 ± 0.03	$0.23 \pm 0.04 \uparrow$	$0.24 \pm 0.04 \uparrow$	0.11 ± 0.01	$0.19 \pm 0.03 \uparrow$	$0.18 \pm 0.02 \uparrow$	0.04	0.13
bag	0.49 ± 0.07	$0.63 \pm 0.06 \uparrow$	$0.62 \pm 0.07 \uparrow$	0.70 ± 0.03	$0.76 \pm 0.05 \uparrow$	$0.78 \pm 0.03 \uparrow$	0.04	0.07
trouser	0.32 ± 0.10	$0.05 \pm 0.04 \downarrow$	$0.04 \pm 0.02 \downarrow$	0.59 ± 0.04	$0.22 \pm 0.08 \downarrow$	$0.34 \pm 0.06 \downarrow$	0.06	0.12
boot	0.92 ± 0.03	0.95 ± 0.03	0.95 ± 0.03	0.98 ± 0.02	$1.00 \pm 0.00 \uparrow$	$1.00 \pm 0.00 \uparrow$	0.08	0.07
sandal	0.30 ± 0.04	$0.92\pm0.04\uparrow$	$0.92 \pm 0.04 \uparrow$	0.82 ± 0.02	0.96 ± 0.01 \uparrow	$0.97\pm0.01\uparrow$	0.09	0.02

training normal = top, training abnormal = 50% shirt and 50% sneaker

Table 9: The model TPR under configuration 1 of weighted mixture training on Fashion-MNIST.

Takeaways and Future Directions

Additional labeled data in AD poses a *hidden threat* for model practitioners.

Potential debiasing strategies:

- Data-based strategy
 - Using *active learning* and to get representative anomaly labels on the fly.
 - Leveraging *synthetic samples*;
- Model-based strategy
 - Robust model design (e.g., ensembles).

References

[SHS05] I. Steinwart, D. Hush, and C. Scovel, "A classification framework for anomaly detection," Journal of Machine Learning Research, vol. 6, no. Feb, pp. 211–232, 2005.

[Gör+13] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld, "Toward supervised anomaly detection," Journal of Artificial Intelligence Research, vol. 46, pp. 235–262, 2013.

[AC15] J. An and S. Cho. "Variational autoencoder based anomaly detection using reconstruction probability." Special Lecture on IE 2, no. 1 (2015): 1-18.

[ZP17] C. Zhou and R. Paffenroth. "Anomaly detection with robust deep autoencoders". In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017.

[Ruf+18] L. Ruff, R. Vandermeulen, N. Gornitz, L. Deecke, S. Siddiqui, A. Binder, E. Muller, and M. Kloft. "Deep one-class classification." In Proc. of ICML, 2018.

[Goy+20] S. Goyal, A. Raghunathan, M. Jain, H. Simhadri, and P. Jain. "Drocc: Deep robust one classification." In Proc. of ICML, 2020.

[Pan+19] G. Pang, C. Shen, and A. Hengel. "Deep anomaly detection with deviation networks." In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 353–362, 2019.

[Yam+19] Y. Yamanaka, T. Iwata, H. Takahashi, M. Yamada, and S. Kanai. "Autoencoding binary classifiers for supervised anomaly detection." arXiv preprint arXiv:1903.10709, 2019.

[Hen+19] D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song. "Using self-supervised learning can improve model robustness and uncertainty." In Advances in Neural Information Processing Systems, pages 15663–15674, 2019.

[Ruf+20] L. Ruff, R. Vandermeulen, N. Gornitz, A. Binder, E. Muller, K. Muller, and M. Kloft. "Deep semi-supervised anomaly detection." In Proc. of ICLR, 2020.

[AsS+20] B. AsSadhan, R. AlShaalan, D. Diab, A. Alzoghaiby, S. Alshebeili, J. Al-Muhtadi, H. Bin-Abbas, F. Abd El-Samie. "A robust anomaly detection method using a constant false alarm rate approach." Multimedia Tools and Applications. 2020 Jan 22:1-24.

[Li+19] Z. Li, Z. Xiao, B. Wang, B. Zhao, and H. Zheng. "Scaling deep learning models for spectrum anomaly detection." In Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, page 291–300, 2019.

[Liu+18] S. Liu, R. Garrepalli, T. Dietterich, A. Fern, and D. Hendrycks. "Open category detection with PAC guarantees." In Proc. of ICML, 2018.