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1. Introduction

AD is critical in many real-world applications.
e.g., intrusion detection, fraud detection, adversarial attacks, 
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Known types in source distribution

Unknown types in target distribution

Normal

Abnormal

. . . 

(An illustrative example of Pokémon.)

Basic assumption: limited knowledge for anomalies.

§ Few samples of anomalies in training;

§ Unexpectable target distribution of anomalies.

➜ Challenging to get a representative anomaly set.  
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Motivation

Image Source: Ruff, Lukas, et al. "Deep semi-supervised anomaly detection." In proc. of ICLR, 2020.

Supervised (AD)

(Deep SAD)

Pro

Discriminating on known anomalies. 

A compact enclosing of the normal.
+

[Pan+19], [Yam+19], [Hen+19], [Ruf+20], [Goy+20], ...

Can unseen anomalies suffer from bias*?

* Note that such bias is novel compared to the aforementioned in literature (c.f. Section 2 of our paper).
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A Counter-Intuitive Example

2. Motivation

Training with additional labeled anomalies can bring disastrous harmful bias.
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A Counter-Intuitive Example

2. Motivation

Training with additional labeled anomalies can bring disastrous harmful bias.

Source code available on github.com/ZIYU-DEEP/Understanding-Bias-in-
Deep-Anomaly-Detection-PyTorch/blob/main/network/gaussian3d_net.py

Fig 1. Original 3D Space Fig 2. 2D Latent Space (Semi-Supervised AD) Fig 3. 2D Latent Space (Supervised AD)
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Our Contributions

2. Motivation

Define Bias: A formal ERM Framework

Estimate Bias: The First PAC Analysis2 Characterize Bias: Empirical Experiments3

1
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[Clarification] Bias in AD ≠ Bias in Supervised Learning

1. Introduction

Problem formulation is different.

Target DistributionSource Distribution

Fig 1. Data distribution of AD problem. The blue represent the normal data, 
and other different colors represent different subtypes of anomalies.
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[Clarification] Bias in AD ≠ Bias in Supervised Learning

1. Introduction

Training mechanism is different.

Pro Discriminating on known anomalies. 

Overfitting to known anomalies.
➜ Overfitting bias.

Con

(Binary Classifier)

Supervised (Classifier) Supervised (AD)

(Deep SAD)

Pro

Discriminating on known anomalies. 

A compact enclosing of the normal.
+

[Pan+19], [Yam+19], [Hen+19], [Ruf+20], [Goy+20], ...
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How to Define Bias in AD?
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A General AD Framework

3. Problem Formulation

!𝐹!: score CDF of normal instances

!𝐹": score CDF of abnormal instances 

This formulation generalizes most practical AD frameworks, e.g, [Liu+18], [Li+19], [AsS+20], etc. 



30

ERM-Style Scoring Bias

3. Problem Formulation

Scoring Bias1



31

ERM-Style Scoring Bias

3. Problem Formulation

Scoring Bias1

Relative Scoring Bias2

𝐹": one model’s score CDF of abnormal instances 
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32

ERM-Style Scoring Bias

3. Problem Formulation

Scoring Bias1

Relative Scoring Bias2

Empirical Relative Scoring Bias3

𝐹": one model’s score CDF of abnormal instances 

𝐹"′: another model’s score CDF of abnormal instances
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How to Estimate Bias in AD?
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Finite Sample Guarantee

4. Finite Sample Guarantee

Goal: a theoretical guarantee on model performance in terms of bias.  
e.g., how can we almost surely say that additional labeled data helps, or hurts?

* The exact form and detailed proof of Theorem 3 can be found in our full paper.
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Convergence of Scoring Bias: Empirical Results

4. Finite Sample Guarantee

Fig 1.  !𝜉 is the scoring bias of Deep SVDD relative to Deep SAD. 

The sample complexity n  grows as                            . .

The estimation error    decreases at the rate of           .
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How does Bias Impact AD?
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Recall on Our Observations…

5. Impact of Bias

Fig 1. Original 3D Space Fig 2. 2D Latent Space (Semi-Supervised AD) Fig 3. 2D Latent Space (Supervised AD)
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5. Impact of Bias
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Training with different distributions affects normal enclosing unevenly.
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Experiment Setup

5. Impact of Bias

Models

Datasets

Landsat Satellite Spectrum MisuseFashion-MNIST



45

Scenario 1: Training w/ the Hard Anomalies

5. Impact of Bias
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Scenario 2: Training w/ the Easy Anomalies

5. Impact of Bias
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Scenario 2: Training w/ the Easy Anomalies

5. Impact of Bias

Mostly harmless bias!
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Scenario 3: Mixed Training

5. Impact of Bias
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Takeaways and Future Directions

5. Impact of Bias

Additional labeled data in AD poses a hidden threat for model practitioners.

Potential debiasing strategies:

§ Data-based strategy

o Using active learning and to get representative anomaly labels on the fly. 
o Leveraging synthetic samples;

§ Model-based strategy
o Robust model design (e.g., ensembles).
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